8eax
From Proteopedia
(Difference between revisions)
Line 4: | Line 4: | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[8eax]] is a 8 chain structure with sequence from [https://en.wikipedia.org/wiki/Diaporthe_amygdali Diaporthe amygdali]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=8EAX OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=8EAX FirstGlance]. <br> | <table><tr><td colspan='2'>[[8eax]] is a 8 chain structure with sequence from [https://en.wikipedia.org/wiki/Diaporthe_amygdali Diaporthe amygdali]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=8EAX OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=8EAX FirstGlance]. <br> | ||
- | </td></tr><tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=8eax FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=8eax OCA], [https://pdbe.org/8eax PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=8eax RCSB], [https://www.ebi.ac.uk/pdbsum/8eax PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=8eax ProSAT]</span></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Electron Microscopy, [[Resolution|Resolution]] 3.73Å</td></tr> |
+ | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=8eax FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=8eax OCA], [https://pdbe.org/8eax PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=8eax RCSB], [https://www.ebi.ac.uk/pdbsum/8eax PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=8eax ProSAT]</span></td></tr> | ||
</table> | </table> | ||
== Function == | == Function == | ||
[https://www.uniprot.org/uniprot/FC1_PHOAM FC1_PHOAM] Multifunctional diterpene synthase; part of the 2 gene clusters that mediate the biosynthesis of fusicoccins, diterpene glucosides that display phytohormone-like activity and function as potent activators of plasma membrane H(+)-ATPases in plants by modifying 14-3-3 proteins and cause the plant disease constriction canker (PubMed:17360612, PubMed:26734760). The first step in the pathway is performed by the fusicoccadiene synthase PaFS that possesses both prenyl transferase and terpene cyclase activity, converting isopentenyl diphosphate and dimethylallyl diphosphate into geranylgeranyl diphosphate (GGDP) and successively converting GGDP into fusicocca-2,10(14)-diene, a precursor for fusicoccin H (PubMed:17360612, PubMed:26734760). Fusicoccadiene synthase is an allosteric enzyme for GGPP cyclization that generates 64% fusicoccadiene, 9% delta-araneosene, and one additional unidentified diterpene product, when incubated with GGPP (PubMed:26734760). In the absence of isopentenyl diphosphate (IPP), PaFS can also solvolyze the shorter chain geranyl diphosphate (GPP) and farnesyl diphosphate (FPP) as alternative substrates to yield predominantly acyclic products. FPP is converted to farnesol (60.5%), nerolidol (14.0%), and farnesene (14.0%), while GPP is converted to a mixture of geraniol (59.5%) and linalool (35.0%) (PubMed:26734760). The second step is the oxidation at the C-8 position by the cytochrome P450 monooxygenase PaP450-2 to yield fusicocca-2,10(14)-diene-8-beta-ol (PubMed:22870285). The cytochrome P450 monooxygenase PaP450-1 then catalyzes the hydroxylation at the C-16 position to produce fusicocca-2,10(14)-diene-8-beta,16-diol (PubMed:22870285). The dioxygenase fc-dox then catalyzes the 16-oxydation of fusicocca-2,10(14)-diene-8-beta,16-diol to yield an aldehyde (8-beta-hydroxyfusicocca-1,10(14)-dien-16-al) (PubMed:21299202, PubMed:22870285). The short-chain dehydrogenase/reductase fc-sdr catalyzes the reduction of the aldehyde to yield fusicocca-1,10(14)-diene-8-beta,16-diol (PubMed:21299202, PubMed:22870285). The next step is the hydroxylation at C-9 performed by the cytochrome P450 monooxagenase PaP450-3 that leads to fusicoccin H aglycon which is glycosylated to fusicoccin H by the O-glycosyltransferase PAGT (PubMed:22870285). Hydroxylation at C-12 by the cytochrome P450 monooxygenase PaP450-4 leads then to the production of fusicoccin Q and is followed by methylation by the O-methyltransferase PAMT to yield fusicoccin P (PubMed:22870285). Fusicoccin P is further converted to fusicoccin J via prenylation by the O-glucose prenyltransferase PaPT (PubMed:22287087). Cytochrome P450 monooxygenase PaP450-5 then performs hydroxylation at C-19 to yield dideacetyl-fusicoccin A which is acetylated to 3'-O-deacetyl-fusicoccin A by the O-acetyltransferase PaAT-2 (PubMed:22870285). Finally, a another acetylation by the O-acetyltransferase PaAT-1 yields fusicoccin A (PubMed:22870285).<ref>PMID:17360612</ref> <ref>PMID:21299202</ref> <ref>PMID:22287087</ref> <ref>PMID:22870285</ref> <ref>PMID:26734760</ref> | [https://www.uniprot.org/uniprot/FC1_PHOAM FC1_PHOAM] Multifunctional diterpene synthase; part of the 2 gene clusters that mediate the biosynthesis of fusicoccins, diterpene glucosides that display phytohormone-like activity and function as potent activators of plasma membrane H(+)-ATPases in plants by modifying 14-3-3 proteins and cause the plant disease constriction canker (PubMed:17360612, PubMed:26734760). The first step in the pathway is performed by the fusicoccadiene synthase PaFS that possesses both prenyl transferase and terpene cyclase activity, converting isopentenyl diphosphate and dimethylallyl diphosphate into geranylgeranyl diphosphate (GGDP) and successively converting GGDP into fusicocca-2,10(14)-diene, a precursor for fusicoccin H (PubMed:17360612, PubMed:26734760). Fusicoccadiene synthase is an allosteric enzyme for GGPP cyclization that generates 64% fusicoccadiene, 9% delta-araneosene, and one additional unidentified diterpene product, when incubated with GGPP (PubMed:26734760). In the absence of isopentenyl diphosphate (IPP), PaFS can also solvolyze the shorter chain geranyl diphosphate (GPP) and farnesyl diphosphate (FPP) as alternative substrates to yield predominantly acyclic products. FPP is converted to farnesol (60.5%), nerolidol (14.0%), and farnesene (14.0%), while GPP is converted to a mixture of geraniol (59.5%) and linalool (35.0%) (PubMed:26734760). The second step is the oxidation at the C-8 position by the cytochrome P450 monooxygenase PaP450-2 to yield fusicocca-2,10(14)-diene-8-beta-ol (PubMed:22870285). The cytochrome P450 monooxygenase PaP450-1 then catalyzes the hydroxylation at the C-16 position to produce fusicocca-2,10(14)-diene-8-beta,16-diol (PubMed:22870285). The dioxygenase fc-dox then catalyzes the 16-oxydation of fusicocca-2,10(14)-diene-8-beta,16-diol to yield an aldehyde (8-beta-hydroxyfusicocca-1,10(14)-dien-16-al) (PubMed:21299202, PubMed:22870285). The short-chain dehydrogenase/reductase fc-sdr catalyzes the reduction of the aldehyde to yield fusicocca-1,10(14)-diene-8-beta,16-diol (PubMed:21299202, PubMed:22870285). The next step is the hydroxylation at C-9 performed by the cytochrome P450 monooxagenase PaP450-3 that leads to fusicoccin H aglycon which is glycosylated to fusicoccin H by the O-glycosyltransferase PAGT (PubMed:22870285). Hydroxylation at C-12 by the cytochrome P450 monooxygenase PaP450-4 leads then to the production of fusicoccin Q and is followed by methylation by the O-methyltransferase PAMT to yield fusicoccin P (PubMed:22870285). Fusicoccin P is further converted to fusicoccin J via prenylation by the O-glucose prenyltransferase PaPT (PubMed:22287087). Cytochrome P450 monooxygenase PaP450-5 then performs hydroxylation at C-19 to yield dideacetyl-fusicoccin A which is acetylated to 3'-O-deacetyl-fusicoccin A by the O-acetyltransferase PaAT-2 (PubMed:22870285). Finally, a another acetylation by the O-acetyltransferase PaAT-1 yields fusicoccin A (PubMed:22870285).<ref>PMID:17360612</ref> <ref>PMID:21299202</ref> <ref>PMID:22287087</ref> <ref>PMID:22870285</ref> <ref>PMID:26734760</ref> | ||
- | <div style="background-color:#fffaf0;"> | ||
- | == Publication Abstract from PubMed == | ||
- | Fusicoccadiene synthase from the fungus Phomopsis amygdali (PaFS) is an assembly-line terpene synthase that catalyzes the first two steps in the biosynthesis of Fusiccocin A, a diterpene glycoside. The C-terminal prenyltransferase domain of PaFS catalyzes the condensation of one molecule of C5 dimethylallyl diphosphate and three molecules of C5 isopentenyl diphosphate to form C20 geranylgeranyl diphosphate, which then transits to the cyclase domain for cyclization to form fusicoccadiene. Previous structural studies of PaFS using electron microscopy (EM) revealed a central octameric prenyltransferase core with eight cyclase domains tethered in random distal positions through flexible 70-residue linkers. However, proximal prenyltransferase-cyclase configurations could be captured by covalent cross-linking and observed by cryo-EM and mass spectrometry. Here, we use cryo-EM to show that proximally configured prenyltransferase-cyclase complexes are observable even in the absence of covalent cross-linking; moreover, such complexes can involve multiple cyclase domains. A conserved basic patch on the prenyltransferase domain comprises the primary touchpoint with the cyclase domain. These results support a model for transient prenyltransferase-cyclase association in which the cyclase domains of PaFS are in facile equilibrium between proximal associated and random distal positions relative to the central prenyltransferase octamer. The results of biophysical measurements using small-angle X-ray scattering, analytical ultracentrifugation, dynamic light scattering, and size-exclusion chromatography in-line with multi-angle light scattering are consistent with this model. This model accordingly provides a framework for understanding substrate transit between the prenyltransferase and cyclase domains as well as the cooperativity observed for geranylgeranyl diphosphate cyclization. | ||
- | |||
- | Transient Prenyltransferase-Cyclase Association in Fusicoccadiene Synthase, an Assembly-Line Terpene Synthase.,Faylo JL, van Eeuwen T, Gupta K, Murakami K, Christianson DW Biochemistry. 2022 Nov 1;61(21):2417-2430. doi: 10.1021/acs.biochem.2c00509. Epub, 2022 Oct 13. PMID:36227241<ref>PMID:36227241</ref> | ||
- | |||
- | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
- | </div> | ||
- | <div class="pdbe-citations 8eax" style="background-color:#fffaf0;"></div> | ||
== References == | == References == | ||
<references/> | <references/> |
Current revision
Octameric prenyltransferase domain of fusicoccadiene Synthase with C2 symmetry sans transiently associating cyclase domains
|