7q4w
From Proteopedia
(Difference between revisions)
Line 4: | Line 4: | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[7q4w]] is a 6 chain structure with sequence from [https://en.wikipedia.org/wiki/Acetobacterium_woodii_DSM_1030 Acetobacterium woodii DSM 1030]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=7Q4W OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=7Q4W FirstGlance]. <br> | <table><tr><td colspan='2'>[[7q4w]] is a 6 chain structure with sequence from [https://en.wikipedia.org/wiki/Acetobacterium_woodii_DSM_1030 Acetobacterium woodii DSM 1030]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=7Q4W OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=7Q4W FirstGlance]. <br> | ||
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=FES:FE2/S2+(INORGANIC)+CLUSTER'>FES</scene>, <scene name='pdbligand=FMN:FLAVIN+MONONUCLEOTIDE'>FMN</scene>, <scene name='pdbligand=SF4:IRON/SULFUR+CLUSTER'>SF4</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Electron Microscopy, [[Resolution|Resolution]] 3.78Å</td></tr> |
+ | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=FES:FE2/S2+(INORGANIC)+CLUSTER'>FES</scene>, <scene name='pdbligand=FMN:FLAVIN+MONONUCLEOTIDE'>FMN</scene>, <scene name='pdbligand=SF4:IRON/SULFUR+CLUSTER'>SF4</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7q4w FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7q4w OCA], [https://pdbe.org/7q4w PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7q4w RCSB], [https://www.ebi.ac.uk/pdbsum/7q4w PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7q4w ProSAT]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7q4w FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7q4w OCA], [https://pdbe.org/7q4w PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7q4w RCSB], [https://www.ebi.ac.uk/pdbsum/7q4w PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7q4w ProSAT]</span></td></tr> | ||
</table> | </table> | ||
== Function == | == Function == | ||
- | [https://www.uniprot.org/uniprot/ | + | [https://www.uniprot.org/uniprot/H6LFG3_ACEWD H6LFG3_ACEWD] |
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | Electron bifurcation is a fundamental energy coupling mechanism widespread in microorganisms that thrive under anoxic conditions. These organisms employ hydrogen to reduce CO(2), but the molecular mechanisms have remained enigmatic. The key enzyme responsible for powering these thermodynamically challenging reactions is the electron-bifurcating [FeFe]-hydrogenase HydABC that reduces low-potential ferredoxins (Fd) by oxidizing hydrogen gas (H(2)). By combining single-particle cryo-electron microscopy (cryoEM) under catalytic turnover conditions with site-directed mutagenesis experiments, functional studies, infrared spectroscopy, and molecular simulations, we show that HydABC from the acetogenic bacteria Acetobacterium woodii and Thermoanaerobacter kivui employ a single flavin mononucleotide (FMN) cofactor to establish electron transfer pathways to the NAD(P)(+) and Fd reduction sites by a mechanism that is fundamentally different from classical flavin-based electron bifurcation enzymes. By modulation of the NAD(P)(+) binding affinity via reduction of a nearby iron-sulfur cluster, HydABC switches between the exergonic NAD(P)(+) reduction and endergonic Fd reduction modes. Our combined findings suggest that the conformational dynamics establish a redox-driven kinetic gate that prevents the backflow of the electrons from the Fd reduction branch toward the FMN site, providing a basis for understanding general mechanistic principles of electron-bifurcating hydrogenases. | ||
+ | |||
+ | Molecular Basis of the Electron Bifurcation Mechanism in the [FeFe]-Hydrogenase Complex HydABC.,Katsyv A, Kumar A, Saura P, Poverlein MC, Freibert SA, T Stripp S, Jain S, Gamiz-Hernandez AP, Kaila VRI, Muller V, Schuller JM J Am Chem Soc. 2023 Mar 15;145(10):5696-5709. doi: 10.1021/jacs.2c11683. Epub , 2023 Feb 22. PMID:36811855<ref>PMID:36811855</ref> | ||
+ | |||
+ | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
+ | </div> | ||
+ | <div class="pdbe-citations 7q4w" style="background-color:#fffaf0;"></div> | ||
+ | == References == | ||
+ | <references/> | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> |
Current revision
CryoEM structure of electron bifurcating Fe-Fe hydrogenase HydABC complex A. woodii in the oxidised state
|