7u6m

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Current revision (11:36, 23 October 2024) (edit) (undo)
 
(One intermediate revision not shown.)
Line 4: Line 4:
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[7u6m]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Dickeya_chrysanthemi Dickeya chrysanthemi]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=7U6M OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=7U6M FirstGlance]. <br>
<table><tr><td colspan='2'>[[7u6m]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Dickeya_chrysanthemi Dickeya chrysanthemi]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=7U6M OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=7U6M FirstGlance]. <br>
-
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ASP:ASPARTIC+ACID'>ASP</scene></td></tr>
+
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.75&#8491;</td></tr>
 +
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ASP:ASPARTIC+ACID'>ASP</scene></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7u6m FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7u6m OCA], [https://pdbe.org/7u6m PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7u6m RCSB], [https://www.ebi.ac.uk/pdbsum/7u6m PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7u6m ProSAT]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7u6m FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7u6m OCA], [https://pdbe.org/7u6m PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7u6m RCSB], [https://www.ebi.ac.uk/pdbsum/7u6m PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7u6m ProSAT]</span></td></tr>
</table>
</table>
Line 11: Line 12:
<div style="background-color:#fffaf0;">
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
== Publication Abstract from PubMed ==
-
Asparagine is a non-essential amino acid since it can either be taken up via the diet or synthesized by asparagine synthetase (ASNS). Acute lymphoblastic leukemia (ALL) cells do not or minimally express ASNS which makes them completely dependent on extracellular asparagine for their growth and survival. This dependency makes ALL cells vulnerable to treatment with L-asparaginase, an enzyme that hydrolyzes asparagine. To date, all clinically approved L-asparaginases have a significant L-glutaminase co-activity, associated with non-immune related toxic side effects observed during therapy. Therefore, reduction of L-glutaminase co-activity with concomitant maintenance of its anti-cancer L-asparaginase effect may effectively improve the tolerability of this unique drug. Previously, we designed a new alternative variant of Erwinia chrysanthemi (ErA; Erwinaze) with decreased L-glutaminase co-activity, while maintaining its L-asparaginase activity, by the introduction of three key mutations around the active site (ErA-TM). However, Erwinaze and our ErA-TM variant have a very short half-life in vivo. Here, we show that the fusion of ErA-TM with an albumin binding domain (ABD)-tag significantly increases its in vivo persistence. In addition, we evaluated the in vivo therapeutic efficacy of ABD-ErA-TM in a B-ALL xenograft model of SUP-B15. Our results show a comparable long lasting durable anti-leukemic effect between the standard-of-care PEG-asparaginase and ABD-ErA-TM L-asparaginase, but with fewer co-glutaminase related acute side effects. Since the toxic side effects of current L-asparaginases often result in treatment discontinuation in ALL patients, this novel ErA-TM variant with ultra-low L-glutaminase co-activity and long in vivo persistence may have great clinical potential.
+
Asparagine is a non-essential amino acid since it can either be taken up via the diet or synthesized by asparagine synthetase. Acute lymphoblastic leukemia (ALL) cells do not express asparagine synthetase or express it only minimally, which makes them completely dependent on extracellular asparagine for their growth and survival. This dependency makes ALL cells vulnerable to treatment with L-asparaginase, an enzyme that hydrolyzes asparagine. To date, all clinically approved L-asparaginases have significant L-glutaminase co-activity, associated with non-immune related toxic side effects observed during therapy. Therefore, reduction of L-glutaminase co-activity with concomitant maintenance of its anticancer L-asparaginase effect may effectively improve the tolerability of this unique drug. Previously, we designed a new alternative variant of Erwinia chrysanthemi (ErA; Erwinaze) with decreased L-glutaminase co-activity, while maintaining its L-asparaginase activity, by the introduction of three key mutations around the active site (ErA-TM). However, Erwinaze and our ErA-TM variant have very short half-lives in vivo. Here, we show that the fusion of ErA-TM with an albumin binding domain (ABD)-tag significantly increases its in vivo persistence. In addition, we evaluated the in vivo therapeutic efficacy of ABD-ErA-TM in a B-ALL xenograft model of SUP-B15. Our results show a comparable long-lasting durable antileukemic effect between the standard-of-care pegylated-asparaginase and ABD-ErA-TM L-asparaginase, but with fewer co-glutaminase-related acute side effects. Since the toxic side effects of current L-asparaginases often result in treatment discontinuation in ALL patients, this novel ErA-TM variant with ultra-low L-glutaminase co-activity and long in vivo persistence may have great clinical potential.
-
In vivo stabilization of a less toxic asparaginase variant leads to a durable anti-tumor response in acute leukemia.,Van Trimpont M, Schalk AM, De Visser Y, Nguyen HA, Reunes L, Vandemeulebroecke K, Peeters E, Su Y, Lee H, Lorenzi PL, Chan WK, Mondelaers V, De Moerloose B, Lammens T, Goossens S, Van Vlierberghe P, Lavie A Haematologica. 2022 Aug 18. doi: 10.3324/haematol.2022.281390. PMID:35979719<ref>PMID:35979719</ref>
+
In vivo stabilization of a less toxic asparaginase variant leads to a durable antitumor response in acute leukemia.,Van Trimpont M, Schalk AM, De Visser Y, Nguyen HA, Reunes L, Vandemeulebroecke K, Peeters E, Su Y, Lee H, Lorenzi PL, Chan WK, Mondelaers V, De Moerloose B, Lammens T, Goossens S, Van Vlierberghe P, Lavie A Haematologica. 2023 Feb 1;108(2):409-419. doi: 10.3324/haematol.2022.281390. PMID:35979719<ref>PMID:35979719</ref>
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>

Current revision

Albumin binding domain fused to a mutant of the Erwinia asparaginase

PDB ID 7u6m

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools