4r4e

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Current revision (12:50, 1 March 2024) (edit) (undo)
 
Line 4: Line 4:
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[4r4e]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Bacillus_subtilis_subsp._subtilis_str._168 Bacillus subtilis subsp. subtilis str. 168] and [https://en.wikipedia.org/wiki/Synthetic_construct Synthetic construct]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4R4E OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4R4E FirstGlance]. <br>
<table><tr><td colspan='2'>[[4r4e]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Bacillus_subtilis_subsp._subtilis_str._168 Bacillus subtilis subsp. subtilis str. 168] and [https://en.wikipedia.org/wiki/Synthetic_construct Synthetic construct]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4R4E OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4R4E FirstGlance]. <br>
-
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CXS:3-CYCLOHEXYL-1-PROPYLSULFONIC+ACID'>CXS</scene></td></tr>
+
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.57&#8491;</td></tr>
 +
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CXS:3-CYCLOHEXYL-1-PROPYLSULFONIC+ACID'>CXS</scene></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4r4e FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4r4e OCA], [https://pdbe.org/4r4e PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4r4e RCSB], [https://www.ebi.ac.uk/pdbsum/4r4e PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4r4e ProSAT]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4r4e FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4r4e OCA], [https://pdbe.org/4r4e PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4r4e RCSB], [https://www.ebi.ac.uk/pdbsum/4r4e PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4r4e ProSAT]</span></td></tr>
</table>
</table>
== Function ==
== Function ==
[https://www.uniprot.org/uniprot/GLNR_BACSU GLNR_BACSU] Represses many genes including the glnRA operon and tnrA during growth with nitrogen excess.<ref>PMID:10231480</ref> <ref>PMID:1677938</ref> <ref>PMID:2573733</ref>
[https://www.uniprot.org/uniprot/GLNR_BACSU GLNR_BACSU] Represses many genes including the glnRA operon and tnrA during growth with nitrogen excess.<ref>PMID:10231480</ref> <ref>PMID:1677938</ref> <ref>PMID:2573733</ref>
-
<div style="background-color:#fffaf0;">
 
-
== Publication Abstract from PubMed ==
 
-
All cells must sense and adapt to changing nutrient availability. However, detailed molecular mechanisms coordinating such regulatory pathways remain poorly understood. In Bacillus subtilis, nitrogen homeostasis is controlled by a unique circuitry composed of the regulator TnrA, which is deactivated by feedback-inhibited glutamine synthetase (GS) during nitrogen excess and stabilized by GlnK upon nitrogen depletion, and the repressor GlnR. Here we describe a complete molecular dissection of this network. TnrA and GlnR, the global nitrogen homeostatic transcription regulators, are revealed as founders of a new structural family of dimeric DNA-binding proteins with C-terminal, flexible, effector-binding sensors that modulate their dimerization. Remarkably, the TnrA sensor domains insert into GS intersubunit catalytic pores, destabilizing the TnrA dimer and causing an unprecedented GS dodecamer-to-tetradecamer conversion, which concomitantly deactivates GS. In contrast, each subunit of the GlnK trimer "templates" active TnrA dimers. Unlike TnrA, GlnR sensors mediate an autoinhibitory dimer-destabilizing interaction alleviated by GS, which acts as a GlnR chaperone. Thus, these studies unveil heretofore unseen mechanisms by which inducible sensor domains drive metabolic reprograming in the model Gram-positive bacterium B. subtilis.
 
- 
-
Structures of regulatory machinery reveal novel molecular mechanisms controlling B. subtilis nitrogen homeostasis.,Schumacher MA, Chinnam NB, Cuthbert B, Tonthat NK, Whitfill T Genes Dev. 2015 Feb 15;29(4):451-64. doi: 10.1101/gad.254714.114. PMID:25691471<ref>PMID:25691471</ref>
 
- 
-
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 
-
</div>
 
-
<div class="pdbe-citations 4r4e" style="background-color:#fffaf0;"></div>
 
== References ==
== References ==
<references/>
<references/>

Current revision

Structure of GlnR-DNA complex

PDB ID 4r4e

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools