7z22
From Proteopedia
(Difference between revisions)
(One intermediate revision not shown.) | |||
Line 4: | Line 4: | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[7z22]] is a 12 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=7Z22 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=7Z22 FirstGlance]. <br> | <table><tr><td colspan='2'>[[7z22]] is a 12 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=7Z22 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=7Z22 FirstGlance]. <br> | ||
- | </td></tr><tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7z22 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7z22 OCA], [https://pdbe.org/7z22 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7z22 RCSB], [https://www.ebi.ac.uk/pdbsum/7z22 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7z22 ProSAT]</span></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Electron Microscopy, [[Resolution|Resolution]] 2.95Å</td></tr> |
+ | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7z22 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7z22 OCA], [https://pdbe.org/7z22 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7z22 RCSB], [https://www.ebi.ac.uk/pdbsum/7z22 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7z22 ProSAT]</span></td></tr> | ||
</table> | </table> | ||
== Disease == | == Disease == | ||
Line 10: | Line 11: | ||
== Function == | == Function == | ||
[https://www.uniprot.org/uniprot/CXA1_HUMAN CXA1_HUMAN] Gap junction protein that acts as a regulator of bladder capacity. A gap junction consists of a cluster of closely packed pairs of transmembrane channels, the connexons, through which materials of low MW diffuse from one cell to a neighboring cell. May play a critical role in the physiology of hearing by participating in the recycling of potassium to the cochlear endolymph. Negative regulator of bladder functional capacity: acts by enhancing intercellular electrical and chemical transmission, thus sensitizing bladder muscles to cholinergic neural stimuli and causing them to contract (By similarity). | [https://www.uniprot.org/uniprot/CXA1_HUMAN CXA1_HUMAN] Gap junction protein that acts as a regulator of bladder capacity. A gap junction consists of a cluster of closely packed pairs of transmembrane channels, the connexons, through which materials of low MW diffuse from one cell to a neighboring cell. May play a critical role in the physiology of hearing by participating in the recycling of potassium to the cochlear endolymph. Negative regulator of bladder functional capacity: acts by enhancing intercellular electrical and chemical transmission, thus sensitizing bladder muscles to cholinergic neural stimuli and causing them to contract (By similarity). | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | Gap junction channels (GJCs) mediate intercellular communication by connecting two neighbouring cells and enabling direct exchange of ions and small molecules. Cell coupling via connexin-43 (Cx43) GJCs is important in a wide range of cellular processes in health and disease (Churko and Laird, 2013; Liang et al., 2020; Poelzing and Rosenbaum, 2004), yet the structural basis of Cx43 function and regulation has not been determined until now. Here, we describe the structure of a human Cx43 GJC solved by cryo-EM and single particle analysis at 2.26 A resolution. The pore region of Cx43 GJC features several lipid-like densities per Cx43 monomer, located close to a putative lateral access site at the monomer boundary. We found a previously undescribed conformation on the cytosolic side of the pore, formed by the N-terminal domain and the transmembrane helix 2 of Cx43 and stabilized by a small molecule. Structures of the Cx43 GJC and hemichannels (HCs) in nanodiscs reveal a similar gate arrangement. The features of the Cx43 GJC and HC cryo-EM maps and the channel properties revealed by molecular dynamics simulations suggest that the captured states of Cx43 are consistent with a closed state. | ||
+ | |||
+ | Structure of the connexin-43 gap junction channel in a putative closed state.,Qi C, Acosta Gutierrez S, Lavriha P, Othman A, Lopez-Pigozzi D, Bayraktar E, Schuster D, Picotti P, Zamboni N, Bortolozzi M, Gervasio FL, Korkhov VM Elife. 2023 Aug 3;12:RP87616. doi: 10.7554/eLife.87616. PMID:37535063<ref>PMID:37535063</ref> | ||
+ | |||
+ | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
+ | </div> | ||
+ | <div class="pdbe-citations 7z22" style="background-color:#fffaf0;"></div> | ||
+ | == References == | ||
+ | <references/> | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> |
Current revision
Connexin43 gap junction channel structure in nanodisc
|