8dbx

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Current revision (09:01, 4 June 2025) (edit) (undo)
 
(One intermediate revision not shown.)
Line 4: Line 4:
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[8dbx]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Azotobacter_vinelandii Azotobacter vinelandii]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=8DBX OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=8DBX FirstGlance]. <br>
<table><tr><td colspan='2'>[[8dbx]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Azotobacter_vinelandii Azotobacter vinelandii]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=8DBX OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=8DBX FirstGlance]. <br>
-
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=1CL:FE(8)-S(7)+CLUSTER,+OXIDIZED'>1CL</scene>, <scene name='pdbligand=CLF:FE(8)-S(7)+CLUSTER'>CLF</scene>, <scene name='pdbligand=FE:FE+(III)+ION'>FE</scene>, <scene name='pdbligand=HCA:3-HYDROXY-3-CARBOXY-ADIPIC+ACID'>HCA</scene>, <scene name='pdbligand=ICS:IRON-SULFUR-MOLYBDENUM+CLUSTER+WITH+INTERSTITIAL+CARBON'>ICS</scene></td></tr>
+
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Electron Microscopy, [[Resolution|Resolution]] 1.92&#8491;</td></tr>
 +
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=1CL:FE(8)-S(7)+CLUSTER,+OXIDIZED'>1CL</scene>, <scene name='pdbligand=CLF:FE(8)-S(7)+CLUSTER'>CLF</scene>, <scene name='pdbligand=FE:FE+(III)+ION'>FE</scene>, <scene name='pdbligand=HCA:3-HYDROXY-3-CARBOXY-ADIPIC+ACID'>HCA</scene>, <scene name='pdbligand=ICS:IRON-SULFUR-MOLYBDENUM+CLUSTER+WITH+INTERSTITIAL+CARBON'>ICS</scene></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=8dbx FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=8dbx OCA], [https://pdbe.org/8dbx PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=8dbx RCSB], [https://www.ebi.ac.uk/pdbsum/8dbx PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=8dbx ProSAT]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=8dbx FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=8dbx OCA], [https://pdbe.org/8dbx PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=8dbx RCSB], [https://www.ebi.ac.uk/pdbsum/8dbx PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=8dbx ProSAT]</span></td></tr>
</table>
</table>
Line 13: Line 14:
Nitrogenase catalyzes the ATP-dependent reduction of dinitrogen to ammonia during the process of biological nitrogen fixation that is essential for sustaining life. The active site FeMo-cofactor contains a [7Fe:1Mo:9S:1C] metallocluster coordinated with an R-homocitrate (HCA) molecule. Here, we establish through single particle cryoEM and chemical analysis of two forms of the Azotobacter vinelandii MoFe-protein - a high pH turnover inactivated species and a ∆NifV variant that cannot synthesize HCA - that loss of HCA is coupled to alpha-subunit domain and FeMo-cofactor disordering, and formation of a histidine coordination site. We further find a population of the ∆NifV variant complexed to an endogenous protein identified through structural and proteomic approaches as the uncharacterized protein NafT. Recognition by endogenous NafT demonstrates the physiological relevance of the HCA-compromised form, perhaps for cofactor insertion or repair. Our results point towards a dynamic active site in which HCA plays a role in enabling nitrogenase catalysis by facilitating activation of the FeMo-cofactor from a relatively stable form to a state capable of reducing dinitrogen under ambient conditions.
Nitrogenase catalyzes the ATP-dependent reduction of dinitrogen to ammonia during the process of biological nitrogen fixation that is essential for sustaining life. The active site FeMo-cofactor contains a [7Fe:1Mo:9S:1C] metallocluster coordinated with an R-homocitrate (HCA) molecule. Here, we establish through single particle cryoEM and chemical analysis of two forms of the Azotobacter vinelandii MoFe-protein - a high pH turnover inactivated species and a ∆NifV variant that cannot synthesize HCA - that loss of HCA is coupled to alpha-subunit domain and FeMo-cofactor disordering, and formation of a histidine coordination site. We further find a population of the ∆NifV variant complexed to an endogenous protein identified through structural and proteomic approaches as the uncharacterized protein NafT. Recognition by endogenous NafT demonstrates the physiological relevance of the HCA-compromised form, perhaps for cofactor insertion or repair. Our results point towards a dynamic active site in which HCA plays a role in enabling nitrogenase catalysis by facilitating activation of the FeMo-cofactor from a relatively stable form to a state capable of reducing dinitrogen under ambient conditions.
-
Structural consequences of turnover-induced homocitrate loss in nitrogenase.,Warmack RA, Maggiolo AO, Orta A, Wenke BB, Howard JB, Rees DC Nat Commun. 2023 Feb 25;14(1):1091. doi: 10.1038/s41467-023-36636-4. PMID:36841829<ref>PMID:36841829</ref>
+
, PMID:36841829<ref>PMID:36841829</ref>
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
</div>
<div class="pdbe-citations 8dbx" style="background-color:#fffaf0;"></div>
<div class="pdbe-citations 8dbx" style="background-color:#fffaf0;"></div>
 +
 +
==See Also==
 +
*[[Nitrogenase 3D structures|Nitrogenase 3D structures]]
== References ==
== References ==
<references/>
<references/>

Current revision

CryoEM structure of partially oxidized MoFe-protein on ultrathin carbon

PDB ID 8dbx

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools