7spq
From Proteopedia
(Difference between revisions)
(One intermediate revision not shown.) | |||
Line 4: | Line 4: | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[7spq]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Burkholderia_glumae_BGR1 Burkholderia glumae BGR1]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=7SPQ OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=7SPQ FirstGlance]. <br> | <table><tr><td colspan='2'>[[7spq]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Burkholderia_glumae_BGR1 Burkholderia glumae BGR1]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=7SPQ OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=7SPQ FirstGlance]. <br> | ||
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=1PE:PENTAETHYLENE+GLYCOL'>1PE</scene>, <scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=CIT:CITRIC+ACID'>CIT</scene>, <scene name='pdbligand=PG4:TETRAETHYLENE+GLYCOL'>PG4</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.8Å</td></tr> |
+ | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=1PE:PENTAETHYLENE+GLYCOL'>1PE</scene>, <scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=CIT:CITRIC+ACID'>CIT</scene>, <scene name='pdbligand=PG4:TETRAETHYLENE+GLYCOL'>PG4</scene></td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7spq FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7spq OCA], [https://pdbe.org/7spq PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7spq RCSB], [https://www.ebi.ac.uk/pdbsum/7spq PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7spq ProSAT]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7spq FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7spq OCA], [https://pdbe.org/7spq PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7spq RCSB], [https://www.ebi.ac.uk/pdbsum/7spq PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7spq ProSAT]</span></td></tr> | ||
</table> | </table> | ||
- | == | + | <div style="background-color:#fffaf0;"> |
- | + | == Publication Abstract from PubMed == | |
+ | Toxoflavin, a toxic secondary metabolite produced by a variety of bacteria, has been implicated as a causative agent in food poisoning and a virulence factor in phytopathogenic bacteria. This toxin is produced by genes encoded in the tox operon in Burkholderia glumae, in which the encoded protein, ToxD, was previously characterized as essential for toxoflavin production. To better understand the function of ToxD in toxoflavin biosynthesis and provide a basis for future work to develop inhibitors of ToxD, we undertook the identification of structurally and catalytically important amino acid residues through a combination of X-ray crystallography and site directed mutagenesis. We solved the structure of BgToxD, which crystallized as a dimer, to 1.8 A resolution. We identified a citrate molecule in the putative active site. To investigate the role of individual residues, we used Pseudomonas protegens Pf-5, a BL1 plant protective bacterium known to produce toxoflavin, and created mutants in the ToxD-homologue PFL1035. Using a multiple sequence alignment and the BgToxD structure, we identified and explored the functional importance of 12 conserved residues in the putative active site. Eight variants of PFL1035 resulted in no observable production of toxoflavin. In contrast, four ToxD variants resulted in reduced but detectable toxoflavin production suggesting a nonessential role. The crystal structure and structural models of the substrate and intermediate bound enzyme provide a molecular interpretation for the mutagenesis data. | ||
+ | |||
+ | Crystal Structure, Modeling, and Identification of Key Residues Provide Insights into the Mechanism of the Key Toxoflavin Biosynthesis Protein ToxD.,Justen SF, Fenwick MK, Axt KK, Cherry JA, Ealick SE, Philmus B Biochemistry. 2025 Mar 18;64(6):1199-1211. doi: 10.1021/acs.biochem.4c00421. Epub , 2025 Mar 6. PMID:40047534<ref>PMID:40047534</ref> | ||
+ | |||
+ | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
+ | </div> | ||
+ | <div class="pdbe-citations 7spq" style="background-color:#fffaf0;"></div> | ||
+ | == References == | ||
+ | <references/> | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> |
Current revision
Crystal structure of Burkholderia glumae toxoflavin biosynthesis protein ToxD
|