|
|
| (15 intermediate revisions not shown.) |
| Line 1: |
Line 1: |
| - | [[Image:1l8c.jpg|left|200px]] | |
| | | | |
| - | <!--
| + | ==STRUCTURAL BASIS FOR HIF-1ALPHA/CBP RECOGNITION IN THE CELLULAR HYPOXIC RESPONSE== |
| - | The line below this paragraph, containing "STRUCTURE_1l8c", creates the "Structure Box" on the page. | + | <StructureSection load='1l8c' size='340' side='right'caption='[[1l8c]]' scene=''> |
| - | You may change the PDB parameter (which sets the PDB file loaded into the applet) | + | == Structural highlights == |
| - | or the SCENE parameter (which sets the initial scene displayed when the page is loaded),
| + | <table><tr><td colspan='2'>[[1l8c]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens] and [https://en.wikipedia.org/wiki/Mus_musculus Mus musculus]. The February 2010 RCSB PDB [https://pdb.rcsb.org/pdb/static.do?p=education_discussion/molecule_of_the_month/index.html Molecule of the Month] feature on ''Enhanceosome'' by David Goodsell is [https://dx.doi.org/10.2210/rcsb_pdb/mom_2010_2 10.2210/rcsb_pdb/mom_2010_2]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1L8C OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1L8C FirstGlance]. <br> |
| - | or leave the SCENE parameter empty for the default display.
| + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Solution NMR</td></tr> |
| - | --> | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr> |
| - | {{STRUCTURE_1l8c| PDB=1l8c | SCENE= }}
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1l8c FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1l8c OCA], [https://pdbe.org/1l8c PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1l8c RCSB], [https://www.ebi.ac.uk/pdbsum/1l8c PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1l8c ProSAT]</span></td></tr> |
| | + | </table> |
| | + | == Function == |
| | + | [https://www.uniprot.org/uniprot/CBP_MOUSE CBP_MOUSE] Acetylates histones, giving a specific tag for transcriptional activation. Also acetylates non-histone proteins, like NCOA3 and FOXO1. Binds specifically to phosphorylated CREB and enhances its transcriptional activity toward cAMP-responsive genes. Acts as a coactivator of ALX1 in the presence of EP300 (By similarity).<ref>PMID:10207073</ref> <ref>PMID:11701890</ref> <ref>PMID:15220471</ref> <ref>PMID:16287980</ref> |
| | + | == Evolutionary Conservation == |
| | + | [[Image:Consurf_key_small.gif|200px|right]] |
| | + | Check<jmol> |
| | + | <jmolCheckbox> |
| | + | <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/l8/1l8c_consurf.spt"</scriptWhenChecked> |
| | + | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> |
| | + | <text>to colour the structure by Evolutionary Conservation</text> |
| | + | </jmolCheckbox> |
| | + | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1l8c ConSurf]. |
| | + | <div style="clear:both"></div> |
| | + | <div style="background-color:#fffaf0;"> |
| | + | == Publication Abstract from PubMed == |
| | + | The cellular response to low tissue oxygen concentrations is mediated by the hypoxia-inducible transcription factor HIF-1. Under hypoxic conditions, HIF-1 activates transcription of critical adaptive genes by recruitment of the general coactivators CBP/p300 through interactions with its alpha-subunit (Hif-1 alpha). Disruption of the Hif-1 alpha/p300 interaction has been linked to attenuation of tumor growth. To delineate the structural basis for this interaction, we have determined the solution structure of the complex between the carboxy-terminal activation domain (CAD) of Hif-1 alpha and the zinc-binding TAZ1 (CH1) motif of cyclic-AMP response element binding protein (CREB) binding protein (CBP). Despite the overall similarity of the TAZ1 structure to that of the TAZ2 (part of the CH3) domain of CBP, differences occur in the packing of helices that can account for differences in specificity. The unbound CAD is intrinsically disordered and remains relatively extended upon binding, wrapping almost entirely around the TAZ1 domain in a groove through much of its surface. Three short helices are formed upon binding, stabilized by intermolecular interactions. The Asn-803 side chain, which functions as a hypoxic switch, is located on the second of these helices and is buried in the molecular interface. The third helix of the Hif-1 alpha CAD docks in a deep hydrophobic groove in TAZ1, providing extensive intermolecular hydrophobic interactions that contribute to the stability of the complex. The structure of this complex provides new insights into the mechanism through which Hif-1 alpha recruits CBP/p300 in response to hypoxia. |
| | | | |
| - | '''STRUCTURAL BASIS FOR HIF-1ALPHA/CBP RECOGNITION IN THE CELLULAR HYPOXIC RESPONSE'''
| + | Structural basis for Hif-1 alpha /CBP recognition in the cellular hypoxic response.,Dames SA, Martinez-Yamout M, De Guzman RN, Dyson HJ, Wright PE Proc Natl Acad Sci U S A. 2002 Apr 16;99(8):5271-6. PMID:11959977<ref>PMID:11959977</ref> |
| - | | + | |
| - | | + | |
| - | ==Overview==
| + | |
| - | The cellular response to low tissue oxygen concentrations is mediated by the hypoxia-inducible transcription factor HIF-1. Under hypoxic conditions, HIF-1 activates transcription of critical adaptive genes by recruitment of the general coactivators CBP/p300 through interactions with its alpha-subunit (Hif-1 alpha). Disruption of the Hif-1 alpha/p300 interaction has been linked to attenuation of tumor growth. To delineate the structural basis for this interaction, we have determined the solution structure of the complex between the carboxy-terminal activation domain (CAD) of Hif-1 alpha and the zinc-binding TAZ1 (CH1) motif of cyclic-AMP response element binding protein (CREB) binding protein (CBP). Despite the overall similarity of the TAZ1 structure to that of the TAZ2 (part of the CH3) domain of CBP, differences occur in the packing of helices that can account for differences in specificity. The unbound CAD is intrinsically disordered and remains relatively extended upon binding, wrapping almost entirely around the TAZ1 domain in a groove through much of its surface. Three short helices are formed upon binding, stabilized by intermolecular interactions. The Asn-803 side chain, which functions as a hypoxic switch, is located on the second of these helices and is buried in the molecular interface. The third helix of the Hif-1 alpha CAD docks in a deep hydrophobic groove in TAZ1, providing extensive intermolecular hydrophobic interactions that contribute to the stability of the complex. The structure of this complex provides new insights into the mechanism through which Hif-1 alpha recruits CBP/p300 in response to hypoxia.
| + | |
| | | | |
| - | ==About this Structure==
| + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> |
| - | 1L8C is a [[Protein complex]] structure of sequences from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens] and [http://en.wikipedia.org/wiki/Mus_musculus Mus musculus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1L8C OCA].
| + | </div> |
| | + | <div class="pdbe-citations 1l8c" style="background-color:#fffaf0;"></div> |
| | | | |
| - | ==Reference== | + | ==See Also== |
| - | Structural basis for Hif-1 alpha /CBP recognition in the cellular hypoxic response., Dames SA, Martinez-Yamout M, De Guzman RN, Dyson HJ, Wright PE, Proc Natl Acad Sci U S A. 2002 Apr 16;99(8):5271-6. PMID:[http://www.ncbi.nlm.nih.gov/pubmed/11959977 11959977]
| + | *[[CREB-binding protein 3D structures|CREB-binding protein 3D structures]] |
| | + | *[[Factor inhibiting HIF|Factor inhibiting HIF]] |
| | + | *[[3D structures of hypoxia-inducible factor|3D structures of hypoxia-inducible factor]] |
| | + | == References == |
| | + | <references/> |
| | + | __TOC__ |
| | + | </StructureSection> |
| | + | [[Category: Enhanceosome]] |
| | [[Category: Homo sapiens]] | | [[Category: Homo sapiens]] |
| | + | [[Category: Large Structures]] |
| | [[Category: Mus musculus]] | | [[Category: Mus musculus]] |
| - | [[Category: Protein complex]] | + | [[Category: RCSB PDB Molecule of the Month]] |
| - | [[Category: Dames, S A.]] | + | [[Category: Dames SA]] |
| - | [[Category: Dyson, H J.]] | + | [[Category: De Guzman RN]] |
| - | [[Category: Guzman, R N.De.]] | + | [[Category: Dyson HJ]] |
| - | [[Category: Martinez-Yamout, M.]] | + | [[Category: Martinez-Yamout M]] |
| - | [[Category: Wright, P E.]] | + | [[Category: Wright PE]] |
| - | [[Category: Gene regulation]]
| + | |
| - | ''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Fri May 2 23:39:35 2008''
| + | |
| Structural highlights
Function
CBP_MOUSE Acetylates histones, giving a specific tag for transcriptional activation. Also acetylates non-histone proteins, like NCOA3 and FOXO1. Binds specifically to phosphorylated CREB and enhances its transcriptional activity toward cAMP-responsive genes. Acts as a coactivator of ALX1 in the presence of EP300 (By similarity).[1] [2] [3] [4]
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
The cellular response to low tissue oxygen concentrations is mediated by the hypoxia-inducible transcription factor HIF-1. Under hypoxic conditions, HIF-1 activates transcription of critical adaptive genes by recruitment of the general coactivators CBP/p300 through interactions with its alpha-subunit (Hif-1 alpha). Disruption of the Hif-1 alpha/p300 interaction has been linked to attenuation of tumor growth. To delineate the structural basis for this interaction, we have determined the solution structure of the complex between the carboxy-terminal activation domain (CAD) of Hif-1 alpha and the zinc-binding TAZ1 (CH1) motif of cyclic-AMP response element binding protein (CREB) binding protein (CBP). Despite the overall similarity of the TAZ1 structure to that of the TAZ2 (part of the CH3) domain of CBP, differences occur in the packing of helices that can account for differences in specificity. The unbound CAD is intrinsically disordered and remains relatively extended upon binding, wrapping almost entirely around the TAZ1 domain in a groove through much of its surface. Three short helices are formed upon binding, stabilized by intermolecular interactions. The Asn-803 side chain, which functions as a hypoxic switch, is located on the second of these helices and is buried in the molecular interface. The third helix of the Hif-1 alpha CAD docks in a deep hydrophobic groove in TAZ1, providing extensive intermolecular hydrophobic interactions that contribute to the stability of the complex. The structure of this complex provides new insights into the mechanism through which Hif-1 alpha recruits CBP/p300 in response to hypoxia.
Structural basis for Hif-1 alpha /CBP recognition in the cellular hypoxic response.,Dames SA, Martinez-Yamout M, De Guzman RN, Dyson HJ, Wright PE Proc Natl Acad Sci U S A. 2002 Apr 16;99(8):5271-6. PMID:11959977[5]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Hung HL, Lau J, Kim AY, Weiss MJ, Blobel GA. CREB-Binding protein acetylates hematopoietic transcription factor GATA-1 at functionally important sites. Mol Cell Biol. 1999 May;19(5):3496-505. PMID:10207073
- ↑ Xu W, Chen H, Du K, Asahara H, Tini M, Emerson BM, Montminy M, Evans RM. A transcriptional switch mediated by cofactor methylation. Science. 2001 Dec 21;294(5551):2507-11. Epub 2001 Nov 8. PMID:11701890 doi:10.1126/science.1065961
- ↑ Daitoku H, Hatta M, Matsuzaki H, Aratani S, Ohshima T, Miyagishi M, Nakajima T, Fukamizu A. Silent information regulator 2 potentiates Foxo1-mediated transcription through its deacetylase activity. Proc Natl Acad Sci U S A. 2004 Jul 6;101(27):10042-7. Epub 2004 Jun 25. PMID:15220471 doi:10.1073/pnas.0400593101
- ↑ Kuo HY, Chang CC, Jeng JC, Hu HM, Lin DY, Maul GG, Kwok RP, Shih HM. SUMO modification negatively modulates the transcriptional activity of CREB-binding protein via the recruitment of Daxx. Proc Natl Acad Sci U S A. 2005 Nov 22;102(47):16973-8. Epub 2005 Nov 15. PMID:16287980 doi:10.1073/pnas.0504460102
- ↑ Dames SA, Martinez-Yamout M, De Guzman RN, Dyson HJ, Wright PE. Structural basis for Hif-1 alpha /CBP recognition in the cellular hypoxic response. Proc Natl Acad Sci U S A. 2002 Apr 16;99(8):5271-6. PMID:11959977 doi:http://dx.doi.org/10.1073/pnas.082121399
|