8dn2
From Proteopedia
(Difference between revisions)
(2 intermediate revisions not shown.) | |||
Line 1: | Line 1: | ||
- | '''Unreleased structure''' | ||
- | + | ==Cryo-EM structure of human Glycine Receptor alpha1-beta heteromer, glycine-bound state 2(expanded open)== | |
+ | <StructureSection load='8dn2' size='340' side='right'caption='[[8dn2]], [[Resolution|resolution]] 3.90Å' scene=''> | ||
+ | == Structural highlights == | ||
+ | <table><tr><td colspan='2'>[[8dn2]] is a 5 chain structure with sequence from [https://en.wikipedia.org/wiki/Aequorea_victoria Aequorea victoria] and [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=8DN2 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=8DN2 FirstGlance]. <br> | ||
+ | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Electron Microscopy, [[Resolution|Resolution]] 3.9Å</td></tr> | ||
+ | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=D10:DECANE'>D10</scene>, <scene name='pdbligand=DD9:NONANE'>DD9</scene>, <scene name='pdbligand=GLY:GLYCINE'>GLY</scene>, <scene name='pdbligand=HEX:HEXANE'>HEX</scene>, <scene name='pdbligand=HP6:HEPTANE'>HP6</scene>, <scene name='pdbligand=NAG:N-ACETYL-D-GLUCOSAMINE'>NAG</scene>, <scene name='pdbligand=NBU:N-BUTANE'>NBU</scene>, <scene name='pdbligand=OCT:N-OCTANE'>OCT</scene>, <scene name='pdbligand=UND:UNDECANE'>UND</scene></td></tr> | ||
+ | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=8dn2 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=8dn2 OCA], [https://pdbe.org/8dn2 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=8dn2 RCSB], [https://www.ebi.ac.uk/pdbsum/8dn2 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=8dn2 ProSAT]</span></td></tr> | ||
+ | </table> | ||
+ | == Disease == | ||
+ | [https://www.uniprot.org/uniprot/GLRA1_HUMAN GLRA1_HUMAN] Defects in GLRA1 are the cause of hyperekplexia, hereditary, type 1 (HKPX1) [MIM:[https://omim.org/entry/149400 149400]. A neurologic disorder characterized by muscular rigidity of central nervous system origin, particularly in the neonatal period, and by an exaggerated startle response to unexpected acoustic or tactile stimuli.<ref>PMID:8298642</ref> [:]<ref>PMID:7925268</ref> <ref>PMID:7981700</ref> <ref>PMID:7881416</ref> <ref>PMID:7611730</ref> <ref>PMID:8571969</ref> <ref>PMID:8733061</ref> <ref>PMID:9067762</ref> <ref>PMID:10514101</ref> <ref>PMID:9920650</ref> | ||
+ | == Function == | ||
+ | [https://www.uniprot.org/uniprot/GLRA1_HUMAN GLRA1_HUMAN] The glycine receptor is a neurotransmitter-gated ion channel. Binding of glycine to its receptor increases the chloride conductance and thus produces hyperpolarization (inhibition of neuronal firing). | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | Hetero-pentameric Cys-loop receptors constitute a major type of neurotransmitter receptors that enable signal transmission and processing in the nervous system. Despite intense investigations into their working mechanism and pharmaceutical potentials, how neurotransmitters activate these receptors remains unclear due to the lack of high-resolution structural information in the activated open state. Here we report near-atomic resolution structures resolved in digitonin consistent with all principle functional states of the human alpha1beta GlyR, which is a major Cys-loop receptor that mediates inhibitory neurotransmission in the central nervous system of adults. Glycine binding induces cooperative and symmetric structural rearrangements in the neurotransmitter-binding extracellular domain but asymmetrical pore dilation in the transmembrane domain. Symmetric response in the extracellular domain is consistent with electrophysiological data showing cooperative glycine activation and contribution from both alpha1 and beta subunits. A set of functionally essential but differentially charged amino acid residues in the transmembrane domain of the alpha1 and beta subunits explains asymmetric activation. These findings provide a foundation for understanding how the gating of the Cys-loop receptor family members diverges to accommodate specific physiological environments. | ||
- | + | Asymmetric gating of a human hetero-pentameric glycine receptor.,Liu X, Wang W Nat Commun. 2023 Oct 11;14(1):6377. doi: 10.1038/s41467-023-42051-6. PMID:37821459<ref>PMID:37821459</ref> | |
- | + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |
- | [[Category: | + | </div> |
+ | <div class="pdbe-citations 8dn2" style="background-color:#fffaf0;"></div> | ||
+ | == References == | ||
+ | <references/> | ||
+ | __TOC__ | ||
+ | </StructureSection> | ||
+ | [[Category: Aequorea victoria]] | ||
+ | [[Category: Homo sapiens]] | ||
+ | [[Category: Large Structures]] | ||
+ | [[Category: Liu X]] | ||
+ | [[Category: Wang W]] |
Current revision
Cryo-EM structure of human Glycine Receptor alpha1-beta heteromer, glycine-bound state 2(expanded open)
|