We apologize for Proteopedia being slow to respond. For the past two years, a new implementation of Proteopedia has been being built. Soon, it will replace this 18-year old system. All existing content will be moved to the new system at a date that will be announced here.
5fb3
From Proteopedia
(Difference between revisions)
| Line 10: | Line 10: | ||
== Function == | == Function == | ||
[https://www.uniprot.org/uniprot/G1PDH_PYRCJ G1PDH_PYRCJ] Catalyzes the NAD(P)H-dependent reduction of dihydroxyacetonephosphate (DHAP or glycerone phosphate) to glycerol 1-phosphate (G1P). The G1P thus generated is used as the glycerophosphate backbone of phospholipids in the cellular membranes of Archaea. | [https://www.uniprot.org/uniprot/G1PDH_PYRCJ G1PDH_PYRCJ] Catalyzes the NAD(P)H-dependent reduction of dihydroxyacetonephosphate (DHAP or glycerone phosphate) to glycerol 1-phosphate (G1P). The G1P thus generated is used as the glycerophosphate backbone of phospholipids in the cellular membranes of Archaea. | ||
| - | <div style="background-color:#fffaf0;"> | ||
| - | == Publication Abstract from PubMed == | ||
| - | A gene encoding an sn-glycerol-1-phosphate dehydrogenase (G1PDH) was identified in the hyperthermophilic archaeon Pyrobaculum calidifontis. The gene was overexpressed in Escherichia coli, and its product was purified and characterized. In contrast to conventional G1PDHs, the expressed enzyme showed strong preference for NADH: the reaction rate (Vmax ) with NADPH was only 2.4% of that with NADH. The crystal structure of the enzyme was determined at a resolution of 2.45 A. The asymmetric unit consisted of one homohexamer. Refinement of the structure and HPLC analysis showed the presence of the bound cofactor NADPH in subunits D, E, and F, even though it was not added in the crystallization procedure. The phosphate group at C2' of the adenine ribose of NADPH is tightly held through the five biased hydrogen bonds with Ser40 and Thr42. In comparison with the known G1PDH structure, the NADPH molecule was observed to be pushed away from the normal coenzyme binding site. Interestingly, the S40A/T42A double mutant enzyme acquired much higher reactivity than the wild-type enzyme with NADPH, which suggests that the biased interactions around the C2'-phosphate group make NADPH binding insufficient for catalysis. Our results provide a unique structural basis for coenzyme preference in NAD(P)-dependent dehydrogenases. Proteins 2016. (c) 2016 Wiley Periodicals, Inc. | ||
| - | |||
| - | Unique coenzyme binding mode of hyperthermophilic archaeal sn-glycerol-1-phosphate dehydrogenase from Pyrobaculum calidifontis.,Hayashi J, Yamamoto K, Yoneda K, Ohshima T, Sakuraba H Proteins. 2016 Sep 12. doi: 10.1002/prot.25161. PMID:27616573<ref>PMID:27616573</ref> | ||
| - | |||
| - | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
| - | </div> | ||
| - | <div class="pdbe-citations 5fb3" style="background-color:#fffaf0;"></div> | ||
| - | == References == | ||
| - | <references/> | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
Current revision
Structure of glycerophosphate dehydrogenase in complex with NADPH
| |||||||||||
