3aas
From Proteopedia
(Difference between revisions)
(One intermediate revision not shown.) | |||
Line 15: | Line 15: | ||
<jmolCheckbox> | <jmolCheckbox> | ||
<scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/aa/3aas_consurf.spt"</scriptWhenChecked> | <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/aa/3aas_consurf.spt"</scriptWhenChecked> | ||
- | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/ | + | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked> |
<text>to colour the structure by Evolutionary Conservation</text> | <text>to colour the structure by Evolutionary Conservation</text> | ||
</jmolCheckbox> | </jmolCheckbox> | ||
Line 24: | Line 24: | ||
The crystal structures of the complexes of bovine trypsin with m-guanidinosalicylidene-l-alaninato(aqua)copper(II) hydrochloride (inhibitor 1), [N,N'-bis(m-guanidinosalicylidene)ethylenediaminato]copper(II) (inhibitor 2), and [N,N'-bis(m-amidinosalicylidene)ethylenediaminato]copper(II) (inhibitor 4) have been determined. The guanidine-containing trypsin-inhibitors (1 and 2) bind to the trypsin active site in a manner similar to that previously reported for amidine-containing inhibitors, for example, m-amidinosalicylidene-l-alaninato(aqua)copper(II) hydrochloride (inhibitor 3). However, the binding mode of the guanidino groups of inhibitors 1 and 2 to Asp189 in the S1 pocket of trypsin was found to be markedly different from that of the amidino group of inhibitor 3. The present X-ray analyses revealed that the interactions of the metal ion of the inhibitors with the active site residues of trypsin play a crucial role in the binding affinity to the trypsin molecule. These structural information and inhibitory activity data for amidine- and guanidine-containing Schiff base metal chelate inhibitors provide new avenues for designing novel inhibitors against physiologically important trypsin-like serine proteases. | The crystal structures of the complexes of bovine trypsin with m-guanidinosalicylidene-l-alaninato(aqua)copper(II) hydrochloride (inhibitor 1), [N,N'-bis(m-guanidinosalicylidene)ethylenediaminato]copper(II) (inhibitor 2), and [N,N'-bis(m-amidinosalicylidene)ethylenediaminato]copper(II) (inhibitor 4) have been determined. The guanidine-containing trypsin-inhibitors (1 and 2) bind to the trypsin active site in a manner similar to that previously reported for amidine-containing inhibitors, for example, m-amidinosalicylidene-l-alaninato(aqua)copper(II) hydrochloride (inhibitor 3). However, the binding mode of the guanidino groups of inhibitors 1 and 2 to Asp189 in the S1 pocket of trypsin was found to be markedly different from that of the amidino group of inhibitor 3. The present X-ray analyses revealed that the interactions of the metal ion of the inhibitors with the active site residues of trypsin play a crucial role in the binding affinity to the trypsin molecule. These structural information and inhibitory activity data for amidine- and guanidine-containing Schiff base metal chelate inhibitors provide new avenues for designing novel inhibitors against physiologically important trypsin-like serine proteases. | ||
- | + | , PMID:20202854<ref>PMID:20202854</ref> | |
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> |
Current revision
Bovine beta-trypsin bound to meta-guanidino schiff base copper (II) chelate
|