Structural highlights
Function
CERS5_MOUSE Dihydroceramide synthase. Catalyzes the acylation of sphingosine to form dihydroceramide, with high selectivity toward palmitoyl-CoA as acyl donor compared to stearoyl-CoA. Inhibited by fumonisin B1.[1] [2]
Publication Abstract from PubMed
Human cancers frequently display defects in Ag processing and presentation allowing for immune evasion, and they therefore constitute a significant challenge for T cell-based immunotherapy. We have previously demonstrated that the antigenicity of tumor-associated Ags can be significantly enhanced through unconventional residue modifications as a novel tool for MHC class I (MHC-I)-based immunotherapy approaches. We have also previously identified a novel category of cancer neo-epitopes, that is, T cell epitopes associated with impaired peptide processing (TEIPP), that are selectively presented by MHC-I on cells lacking the peptide transporter TAP. In this study, we demonstrate that substitution of the nonanchoring position 3 into a proline residue of the first identified TEIPP peptide, the murine Trh4, results in significantly enhanced recognition by antitumor CTLs toward the wild-type epitope. Although higher immunogenicity has in most cases been associated with increased MHC/peptide complex stability, our results demonstrate that the overall stability of H-2D(b) in complex with the highly immunogenic altered peptide ligand Trh4-p3P is significantly reduced compared with wild-type H-2D(b)/Trh4. Comparison of the crystal structures of the H-2D(b)/Trh4-p3P and H-2D(b)/Trh4 complexes revealed that the conformation of the nonconventional methionine anchor residue p5M is altered, deleting its capacity to form adequate sulfur-pi interactions with H-2D(b) residues, thus reducing the overall longevity of the complex. Collectively, our results indicate that vaccination with Thr4-p3P significantly enhances T cell recognition of targets presenting the wild-type TEIPP epitope and that higher immunogenicity is not necessarily directly related to MHC/peptide complex stability, opening for the possibility to design novel peptide vaccines with reduced MHC/peptide complex stability.
The Immunogenicity of a Proline-Substituted Altered Peptide Ligand toward the Cancer-Associated TEIPP Neoepitope Trh4 Is Unrelated to Complex Stability.,Hafstrand I, Doorduijn EM, Sun R, Talyzina A, Sluijter M, Pellegrino S, Sandalova T, Duru AD, van Hall T, Achour A J Immunol. 2018 Mar 5. pii: jimmunol.1700228. doi: 10.4049/jimmunol.1700228. PMID:29507106[3]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Riebeling C, Allegood JC, Wang E, Merrill AH Jr, Futerman AH. Two mammalian longevity assurance gene (LAG1) family members, trh1 and trh4, regulate dihydroceramide synthesis using different fatty acyl-CoA donors. J Biol Chem. 2003 Oct 31;278(44):43452-9. Epub 2003 Aug 11. PMID:12912983 doi:http://dx.doi.org/10.1074/jbc.M307104200
- ↑ Lahiri S, Futerman AH. LASS5 is a bona fide dihydroceramide synthase that selectively utilizes palmitoyl-CoA as acyl donor. J Biol Chem. 2005 Oct 7;280(40):33735-8. Epub 2005 Aug 12. PMID:16100120 doi:http://dx.doi.org/10.1074/jbc.M506485200
- ↑ Hafstrand I, Doorduijn EM, Sun R, Talyzina A, Sluijter M, Pellegrino S, Sandalova T, Duru AD, van Hall T, Achour A. The Immunogenicity of a Proline-Substituted Altered Peptide Ligand toward the Cancer-Associated TEIPP Neoepitope Trh4 Is Unrelated to Complex Stability. J Immunol. 2018 Mar 5. pii: jimmunol.1700228. doi: 10.4049/jimmunol.1700228. PMID:29507106 doi:http://dx.doi.org/10.4049/jimmunol.1700228