| Structural highlights
8owz is a 1 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
| | Method: | X-ray diffraction, Resolution 1.65Å |
| Ligands: | , , , , , |
| Resources: | FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT |
Function
SIR2_HUMAN NAD-dependent protein deacetylase, which deacetylates internal lysines on histone and non-histone proteins. Deacetylates 'Lys-40' of alpha-tubulin. Involved in the control of mitotic exit in the cell cycle, probably via its role in the regulation of cytoskeleton. Deacetylates PCK1, opposing proteasomal degradation. Deacetylates 'Lys-310' of RELA.[1] [2] [3] [4]
Publication Abstract from PubMed
Dysregulation of both tubulin deacetylases sirtuin 2 (Sirt2) and the histone deacetylase 6 (HDAC6) has been associated with the pathogenesis of cancer and neurodegeneration, thus making these two enzymes promising targets for pharmaceutical intervention. Herein, we report the design, synthesis, and biological characterization of the first-in-class dual Sirt2/HDAC6 inhibitors as molecular tools for dual inhibition of tubulin deacetylation. Using biochemical in vitro assays and cell-based methods for target engagement, we identified Mz325 (33) as a potent and selective inhibitor of both target enzymes. Inhibition of both targets was further confirmed by X-ray crystal structures of Sirt2 and HDAC6 in complex with building blocks of 33. In ovarian cancer cells, 33 evoked enhanced effects on cell viability compared to single or combination treatment with the unconjugated Sirt2 and HDAC6 inhibitors. Thus, our dual Sirt2/HDAC6 inhibitors are important new tools to study the consequences and the therapeutic potential of dual inhibition of tubulin deacetylation.
Development of First-in-Class Dual Sirt2/HDAC6 Inhibitors as Molecular Tools for Dual Inhibition of Tubulin Deacetylation.,Sinatra L, Vogelmann A, Friedrich F, Tararina MA, Neuwirt E, Colcerasa A, Konig P, Toy L, Yesiloglu TZ, Hilscher S, Gaitzsch L, Papenkordt N, Zhai S, Zhang L, Romier C, Einsle O, Sippl W, Schutkowski M, Gross O, Bendas G, Christianson DW, Hansen FK, Jung M, Schiedel M J Med Chem. 2023 Nov 9;66(21):14787-14814. doi: 10.1021/acs.jmedchem.3c01385. , Epub 2023 Oct 30. PMID:37902787[5]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ North BJ, Marshall BL, Borra MT, Denu JM, Verdin E. The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase. Mol Cell. 2003 Feb;11(2):437-44. PMID:12620231
- ↑ Dryden SC, Nahhas FA, Nowak JE, Goustin AS, Tainsky MA. Role for human SIRT2 NAD-dependent deacetylase activity in control of mitotic exit in the cell cycle. Mol Cell Biol. 2003 May;23(9):3173-85. PMID:12697818
- ↑ Rothgiesser KM, Erener S, Waibel S, Luscher B, Hottiger MO. SIRT2 regulates NF-kappaB dependent gene expression through deacetylation of p65 Lys310. J Cell Sci. 2010 Dec 15;123(Pt 24):4251-8. doi: 10.1242/jcs.073783. Epub 2010 Nov, 16. PMID:21081649 doi:10.1242/jcs.073783
- ↑ Jiang W, Wang S, Xiao M, Lin Y, Zhou L, Lei Q, Xiong Y, Guan KL, Zhao S. Acetylation regulates gluconeogenesis by promoting PEPCK1 degradation via recruiting the UBR5 ubiquitin ligase. Mol Cell. 2011 Jul 8;43(1):33-44. doi: 10.1016/j.molcel.2011.04.028. PMID:21726808 doi:10.1016/j.molcel.2011.04.028
- ↑ Sinatra L, Vogelmann A, Friedrich F, Tararina MA, Neuwirt E, Colcerasa A, König P, Toy L, Yesiloglu TZ, Hilscher S, Gaitzsch L, Papenkordt N, Zhai S, Zhang L, Romier C, Einsle O, Sippl W, Schutkowski M, Gross O, Bendas G, Christianson DW, Hansen FK, Jung M, Schiedel M. Development of First-in-Class Dual Sirt2/HDAC6 Inhibitors as Molecular Tools for Dual Inhibition of Tubulin Deacetylation. J Med Chem. 2023 Nov 9;66(21):14787-14814. PMID:37902787 doi:10.1021/acs.jmedchem.3c01385
|