2oc2

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Current revision (05:23, 17 October 2024) (edit) (undo)
 
(One intermediate revision not shown.)
Line 17: Line 17:
<jmolCheckbox>
<jmolCheckbox>
<scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/oc/2oc2_consurf.spt"</scriptWhenChecked>
<scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/oc/2oc2_consurf.spt"</scriptWhenChecked>
-
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
+
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked>
<text>to colour the structure by Evolutionary Conservation</text>
<text>to colour the structure by Evolutionary Conservation</text>
</jmolCheckbox>
</jmolCheckbox>
Line 24: Line 24:
<div style="background-color:#fffaf0;">
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
== Publication Abstract from PubMed ==
-
ACE plays a critical role in the regulation of blood pressure through its central role in the renin-angiotensin and kallikrein-kinin systems. ACE contains two domains, the N and C domains, both of which are heavily glycosylated. Structural studies of ACE have been fraught with severe difficulties because of surface glycosylation of the protein. In order to investigate the role of glycosylation in the N domain and to create suitable forms for crystallization, we have investigated the importance of the ten potential N-linked glycan sites using enzymatic deglycosylation, limited proteolysis and mass spectrometry. A number of glycosylation mutants were generated via site-directed mutagenesis, expressed in CHO cells and analysed for enzymatic activity and thermal stability. At least seven out of ten of the potential glycan sites are glycosylated; three C-terminal sites were sufficient for expression of active N domain while two N-terminal sites are important for its thermal stability. The minimally glycosylated Ndom389 construct was highly suitable for crystallization studies. The structure in the presence of an N domain selective phosphinic inhibitor RXP407 was determined to 2.0 resolution. The Ndom389 structure revealed a hinge region that may contribute to the breathing motion proposed for substrate binding.
+
Angiotensin I-converting enzyme (ACE) is central to the regulation of the renin-angiotensin system and is a key therapeutic target for combating hypertension and related cardiovascular diseases. Currently available drugs bind both active sites of its two homologous domains, although it is now understood that these domains function differently in vivo. The recently solved crystal structures of both domains (N and C) open the door to new domain-specific inhibitor design, taking advantage of the differences between these two large active sites. Here we present the first crystal structure at a resolution of 2.25 A of testis ACE (identical to the C domain of somatic ACE) with the highly C-domain-specific phosphinic inhibitor, RXPA380. Testis ACE retains the same conformation as seen in previously determined inhibitor complexes, but the RXPA380 central backbone conformation is more similar to that seen for the inhibitor captopril than enalaprilat. The RXPA380 molecule occupies more subsites of the testis ACE active site than the previously determined inhibitors and possesses bulky moieties that extend into the S2' and S2 subsites. Thus the high affinity of RXPA380 for the testis ACE/somatic ACE C domain is explained by the interaction of these bulky moieties with residues unique to these domains, specifically Phe 391, Val 379, and Val 380, that are not found in the N domain. The characterization of the extended active site and the binding of a potent C-domain-selective inhibitor provide the first structural data for the design of truly domain-specific pharmacophores.
-
The N domain of human angiotensin-I converting enzyme: the role of N-glycosylation and the crystal structure in complex with an N domain specific phosphinic inhibitor RXP407.,Anthony CS, Corradi HR, Schwager SL, Redelinghuys P, Georgiadis D, Dive V, Acharya KR, Sturrock ED J Biol Chem. 2010 Sep 8. PMID:20826823<ref>PMID:20826823</ref>
+
The structure of testis angiotensin-converting enzyme in complex with the C domain-specific inhibitor RXPA380.,Corradi HR, Chitapi I, Sewell BT, Georgiadis D, Dive V, Sturrock ED, Acharya KR Biochemistry. 2007 May 8;46(18):5473-8. Epub 2007 Apr 18. PMID:17439247<ref>PMID:17439247</ref>
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>

Current revision

Structure of testis ACE with RXPA380

PDB ID 2oc2

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools