3jbr

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Current revision (08:13, 23 October 2024) (edit) (undo)
 
Line 10: Line 10:
== Function ==
== Function ==
[https://www.uniprot.org/uniprot/CAC1S_RABIT CAC1S_RABIT] Voltage-sensitive calcium channels (VSCC) mediate the entry of calcium ions into excitable cells and are also involved in a variety of calcium-dependent processes, including muscle contraction, hormone or neurotransmitter release, gene expression, cell motility, cell division and cell death. The isoform alpha-1S gives rise to L-type calcium currents. Long-lasting (L-type) calcium channels belong to the 'high-voltage activated' (HVA) group. They are blocked by dihydropyridines (DHP), phenylalkylamines, benzothiazepines, and by omega-agatoxin-IIIA (omega-Aga-IIIA). They are however insensitive to omega-conotoxin-GVIA (omega-CTx-GVIA) and omega-agatoxin-IVA (omega-Aga-IVA). Calcium channels containing the alpha-1S subunit play an important role in excitation-contraction coupling in skeletal muscle.
[https://www.uniprot.org/uniprot/CAC1S_RABIT CAC1S_RABIT] Voltage-sensitive calcium channels (VSCC) mediate the entry of calcium ions into excitable cells and are also involved in a variety of calcium-dependent processes, including muscle contraction, hormone or neurotransmitter release, gene expression, cell motility, cell division and cell death. The isoform alpha-1S gives rise to L-type calcium currents. Long-lasting (L-type) calcium channels belong to the 'high-voltage activated' (HVA) group. They are blocked by dihydropyridines (DHP), phenylalkylamines, benzothiazepines, and by omega-agatoxin-IIIA (omega-Aga-IIIA). They are however insensitive to omega-conotoxin-GVIA (omega-CTx-GVIA) and omega-agatoxin-IVA (omega-Aga-IVA). Calcium channels containing the alpha-1S subunit play an important role in excitation-contraction coupling in skeletal muscle.
 +
<div style="background-color:#fffaf0;">
 +
== Publication Abstract from PubMed ==
 +
The voltage-gated calcium channel Ca(v)1.1 is engaged in the excitation-contraction coupling of skeletal muscles. The Ca(v)1.1 complex consists of the pore-forming subunit alpha1 and auxiliary subunits alpha2delta, beta, and gamma. We report the structure of the rabbit Ca(v)1.1 complex determined by single-particle cryo-electron microscopy. The four homologous repeats of the alpha1 subunit are arranged clockwise in the extracellular view. The gamma subunit, whose structure resembles claudins, interacts with the voltage-sensing domain of repeat IV (VSD(IV)), whereas the cytosolic beta subunit is located adjacent to VSD(II) of alpha1. The alpha2 subunit interacts with the extracellular loops of repeats I to III through its VWA and Cache1 domains. The structure reveals the architecture of a prototypical eukaryotic Ca(v) channel and provides a framework for understanding the function and disease mechanisms of Ca(v) and Na(v) channels.
 +
 +
Structure of the voltage-gated calcium channel Cav1.1 complex.,Wu J, Yan Z, Li Z, Yan C, Lu S, Dong M, Yan N Science. 2015 Dec 18;350(6267):aad2395. doi: 10.1126/science.aad2395. PMID:26680202<ref>PMID:26680202</ref>
 +
 +
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 +
</div>
 +
<div class="pdbe-citations 3jbr" style="background-color:#fffaf0;"></div>
==See Also==
==See Also==
*[[Ion channels 3D structures|Ion channels 3D structures]]
*[[Ion channels 3D structures|Ion channels 3D structures]]
 +
== References ==
 +
<references/>
__TOC__
__TOC__
</SX>
</SX>

Current revision

Cryo-EM structure of the rabbit voltage-gated calcium channel Cav1.1 complex at 4.2 angstrom

3jbr, resolution 4.20Å

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools