8s0h
From Proteopedia
(Difference between revisions)
m (Protected "8s0h" [edit=sysop:move=sysop]) |
|||
(One intermediate revision not shown.) | |||
Line 1: | Line 1: | ||
- | '''Unreleased structure''' | ||
- | The entry | + | ==A fragment-based inhibitor of SHP2== |
+ | <StructureSection load='8s0h' size='340' side='right'caption='[[8s0h]], [[Resolution|resolution]] 1.99Å' scene=''> | ||
+ | == Structural highlights == | ||
+ | <table><tr><td colspan='2'>[[8s0h]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=8S0H OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=8S0H FirstGlance]. <br> | ||
+ | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.99Å</td></tr> | ||
+ | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=A1H4Q:5-(aminomethyl)-~{N}-(3-chloranyl-1-methyl-indol-7-yl)-1,3-dihydroisoindole-2-sulfonamide'>A1H4Q</scene></td></tr> | ||
+ | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=8s0h FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=8s0h OCA], [https://pdbe.org/8s0h PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=8s0h RCSB], [https://www.ebi.ac.uk/pdbsum/8s0h PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=8s0h ProSAT]</span></td></tr> | ||
+ | </table> | ||
+ | == Disease == | ||
+ | [https://www.uniprot.org/uniprot/PTN11_HUMAN PTN11_HUMAN] Defects in PTPN11 are the cause of LEOPARD syndrome type 1 (LEOPARD1) [MIM:[https://omim.org/entry/151100 151100]. It is an autosomal dominant disorder allelic with Noonan syndrome. The acronym LEOPARD stands for lentigines, electrocardiographic conduction abnormalities, ocular hypertelorism, pulmonic stenosis, abnormalities of genitalia, retardation of growth, and deafness.<ref>PMID:12058348</ref> <ref>PMID:14961557</ref> <ref>PMID:15389709</ref> <ref>PMID:15520399</ref> <ref>PMID:15121796</ref> <ref>PMID:15690106</ref> <ref>PMID:16679933</ref> Defects in PTPN11 are the cause of Noonan syndrome type 1 (NS1) [MIM:[https://omim.org/entry/163950 163950]. Noonan syndrome (NS) is a disorder characterized by dysmorphic facial features, short stature, hypertelorism, cardiac anomalies, deafness, motor delay, and a bleeding diathesis. Some patients with Noonan syndrome type 1 develop multiple giant cell lesions of the jaw or other bony or soft tissues, which are classified as pigmented villomoduolar synovitis (PVNS) when occurring in the jaw or joints. Note=Mutations in PTPN11 account for more than 50% of the cases. Rarely, NS is associated with juvenile myelomonocytic leukemia (JMML). NS1 inheritance is autosomal dominant.<ref>PMID:11704759</ref> <ref>PMID:11992261</ref> <ref>PMID:12325025</ref> <ref>PMID:12161469</ref> <ref>PMID:12529711</ref> <ref>PMID:12634870</ref> <ref>PMID:12739139</ref> <ref>PMID:12960218</ref> <ref>PMID:12717436</ref> <ref>PMID:15384080</ref> <ref>PMID:15948193</ref> <ref>PMID:19020799</ref> Defects in PTPN11 are a cause of juvenile myelomonocytic leukemia (JMML) [MIM:[https://omim.org/entry/607785 607785]. JMML is a pediatric myelodysplastic syndrome that constitutes approximately 30% of childhood cases of myelodysplastic syndrome (MDS) and 2% of leukemia. It is characterized by leukocytosis with tissue infiltration and in vitro hypersensitivity of myeloid progenitors to granulocyte-macrophage colony stimulating factor.<ref>PMID:12717436</ref> Defects in PTPN11 are a cause of metachondromatosis (MC) [MIM:[https://omim.org/entry/156250 156250]. It is a skeletal disorder with radiologic fetarures of both multiple exostoses and Ollier disease, characterized by the presence of multiple enchondromas and osteochondroma-like lesions.<ref>PMID:20577567</ref> | ||
+ | == Function == | ||
+ | [https://www.uniprot.org/uniprot/PTN11_HUMAN PTN11_HUMAN] Acts downstream of various receptor and cytoplasmic protein tyrosine kinases to participate in the signal transduction from the cell surface to the nucleus. Dephosphorylates ROCK2 at Tyr-722 resulting in stimulatation of its RhoA binding activity.<ref>PMID:10655584</ref> <ref>PMID:18829466</ref> <ref>PMID:18559669</ref> | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | The ubiquitously expressed protein tyrosine phosphatase SHP2 is required for signaling downstream of receptor tyrosine kinases (RTKs) and plays a role in regulating many cellular processes. Genetic knockdown and pharmacological inhibition of SHP2 suppresses RAS/MAPK signaling and inhibit the proliferation of RTK-driven cancer cell lines. Here, we describe the first reported fragment-to-lead campaign against SHP2, where X-ray crystallography and biophysical techniques were used to identify fragments binding to multiple sites on SHP2. Structure-guided optimization, including several computational methods, led to the discovery of two structurally distinct series of SHP2 inhibitors binding to the previously reported allosteric tunnel binding site (Tunnel Site). One of these series was advanced to a low-nanomolar lead that inhibited tumor growth when dosed orally to mice bearing HCC827 xenografts. Furthermore, a third series of SHP2 inhibitors was discovered binding to a previously unreported site, lying at the interface of the C-terminal SH2 and catalytic domains. | ||
- | + | Fragment-Based Discovery of Allosteric Inhibitors of SH2 Domain-Containing Protein Tyrosine Phosphatase-2 (SHP2).,Day JEH, Berdini V, Castro J, Chessari G, Davies TG, Day PJ, St Denis JD, Fujiwara H, Fukaya S, Hamlett CCF, Hearn K, Hiscock SD, Holvey RS, Ito S, Kandola N, Kodama Y, Liebeschuetz JW, Martins V, Matsuo K, Mortenson PN, Muench S, Nakatsuru Y, Ochiiwa H, Palmer N, Peakman T, Price A, Reader M, Rees DC, Rich SJ, Shah A, Shibata Y, Smyth T, Twigg DG, Wallis NG, Williams G, Wilsher NE, Woodhead A, Shimamura T, Johnson CN J Med Chem. 2024 Mar 28;67(6):4655-4675. doi: 10.1021/acs.jmedchem.3c02118. Epub , 2024 Mar 10. PMID:38462716<ref>PMID:38462716</ref> | |
- | + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |
- | [[Category: | + | </div> |
- | [[Category: Cleasby | + | <div class="pdbe-citations 8s0h" style="background-color:#fffaf0;"></div> |
- | [[Category: Price | + | == References == |
+ | <references/> | ||
+ | __TOC__ | ||
+ | </StructureSection> | ||
+ | [[Category: Homo sapiens]] | ||
+ | [[Category: Large Structures]] | ||
+ | [[Category: Cleasby A]] | ||
+ | [[Category: Price A]] |
Current revision
A fragment-based inhibitor of SHP2
|