1cp3
From Proteopedia
(Difference between revisions)
Line 15: | Line 15: | ||
<jmolCheckbox> | <jmolCheckbox> | ||
<scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/cp/1cp3_consurf.spt"</scriptWhenChecked> | <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/cp/1cp3_consurf.spt"</scriptWhenChecked> | ||
- | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/ | + | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked> |
<text>to colour the structure by Evolutionary Conservation</text> | <text>to colour the structure by Evolutionary Conservation</text> | ||
</jmolCheckbox> | </jmolCheckbox> | ||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1cp3 ConSurf]. | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1cp3 ConSurf]. | ||
<div style="clear:both"></div> | <div style="clear:both"></div> | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | The cysteine protease CPP32 has been expressed in a soluble form in Escherichia coli and purified to >95% purity. The three-dimensional structure of human CPP32 in complex with the irreversible tetrapeptide inhibitor acetyl-Asp-Val-Ala-Asp fluoromethyl ketone was determined by x-ray crystallography at a resolution of 2.3 A. The asymmetric unit contains a (p17/p12)2 tetramer, in agreement with the tetrameric structure of the protein in solution as determined by dynamic light scattering and size exclusion chromatography. The overall topology of CPP32 is very similar to that of interleukin-1beta-converting enzyme (ICE); however, differences exist at the N terminus of the p17 subunit, where the first helix found in ICE is missing in CPP32. A deletion/insertion pattern is responsible for the striking differences observed in the loops around the active site. In addition, the P1 carbonyl of the ketone inhibitor is pointing into the oxyanion hole and forms a hydrogen bond with the peptidic nitrogen of Gly-122, resulting in a different state compared with the tetrahedral intermediate observed in the structure of ICE and CPP32 in complex with an aldehyde inhibitor. The topology of the interface formed by the two p17/p12 heterodimers of CPP32 is different from that of ICE. This results in different orientations of CPP32 heterodimers compared with ICE heterodimers, which could affect substrate recognition. This structural information will be invaluable for the design of small synthetic inhibitors of CPP32 as well as for the design of CPP32 mutants. | ||
+ | |||
+ | Structure of recombinant human CPP32 in complex with the tetrapeptide acetyl-Asp-Val-Ala-Asp fluoromethyl ketone.,Mittl PR, Di Marco S, Krebs JF, Bai X, Karanewsky DS, Priestle JP, Tomaselli KJ, Grutter MG J Biol Chem. 1997 Mar 7;272(10):6539-47. PMID:9045680<ref>PMID:9045680</ref> | ||
+ | |||
+ | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
+ | </div> | ||
+ | <div class="pdbe-citations 1cp3" style="background-color:#fffaf0;"></div> | ||
==See Also== | ==See Also== |
Current revision
CRYSTAL STRUCTURE OF THE COMPLEX OF APOPAIN WITH THE TETRAPEPTIDE INHIBITOR ACE-DVAD-FMC
|