1dnc

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Current revision (21:59, 26 March 2025) (edit) (undo)
 
Line 15: Line 15:
<jmolCheckbox>
<jmolCheckbox>
<scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/dn/1dnc_consurf.spt"</scriptWhenChecked>
<scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/dn/1dnc_consurf.spt"</scriptWhenChecked>
-
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
+
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked>
<text>to colour the structure by Evolutionary Conservation</text>
<text>to colour the structure by Evolutionary Conservation</text>
</jmolCheckbox>
</jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1dnc ConSurf].
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1dnc ConSurf].
<div style="clear:both"></div>
<div style="clear:both"></div>
 +
<div style="background-color:#fffaf0;">
 +
== Publication Abstract from PubMed ==
 +
Nitric oxide (NO) is a pluripotent regulatory molecule, yet the molecular mechanisms by which it exerts its effects are largely unknown. Few physiologic target molecules of NO have been identified, and even for these, the modifications caused by NO remain uncharacterized. Human glutathione reductase (hGR), a central enzyme of cellular antioxidant defense, is inhibited by S-nitrosoglutathione (GSNO) and by diglutathionyl-dinitroso-iron (DNIC-[GSH]2), two in vivo transport forms of NO. Here, crystal structures of hGR inactivated by GSNO and DNIC-[GSH]2 at 1.7 A resolution provide the first picture of enzyme inactivation by NO-carriers: in GSNO-modified hGR, the active site residue Cys 63 is oxidized to an unusually stable cysteine sulfenic acid (R-SOH), whereas modification with DNIC-[GSH]2 oxidizes Cys 63 to a cysteine sulfinic acid (R-SO2H). Our results illustrate that various forms of NO can mediate distinct chemistry, and that sulfhydryl oxidation must be considered as a major mechanism of NO action.
 +
 +
Enzyme inactivation through sulfhydryl oxidation by physiologic NO-carriers.,Becker K, Savvides SN, Keese M, Schirmer RH, Karplus PA Nat Struct Biol. 1998 Apr;5(4):267-71. PMID:9546215<ref>PMID:9546215</ref>
 +
 +
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 +
</div>
 +
<div class="pdbe-citations 1dnc" style="background-color:#fffaf0;"></div>
==See Also==
==See Also==
*[[Glutathione Reductase|Glutathione Reductase]]
*[[Glutathione Reductase|Glutathione Reductase]]
 +
== References ==
 +
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>

Current revision

HUMAN GLUTATHIONE REDUCTASE MODIFIED BY DIGLUTATHIONE-DINITROSO-IRON

PDB ID 1dnc

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools