1ef5
From Proteopedia
(Difference between revisions)
Line 19: | Line 19: | ||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1ef5 ConSurf]. | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1ef5 ConSurf]. | ||
<div style="clear:both"></div> | <div style="clear:both"></div> | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | The RGL protein, a homolog of the Ral GDP dissociation stimulator (RalGDS), has been identified as a downstream effector of Ras. In the present study, the solution structure of the Ras-binding domain of RGL (RGL-RBD) was determined by NMR spectroscopy. The overall fold of RGL-RBD consists of a five-stranded beta-sheet and two alpha-helices, which is the same topology as that of RalGDS-RBD. The backbone chemical shift perturbation of RGL-RBD upon interaction with the GTP analog-bound Ras was also examined. The solution structure of RGL-RBD, especially around some of the Ras-interacting residues, is appreciably different from that of RalGDS-RBD. | ||
+ | |||
+ | Solution structure of the Ras-binding domain of RGL.,Kigawa T, Endo M, Ito Y, Shirouzu M, Kikuchi A, Yokoyama S FEBS Lett. 1998 Dec 28;441(3):413-8. PMID:9891982<ref>PMID:9891982</ref> | ||
+ | |||
+ | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
+ | </div> | ||
+ | <div class="pdbe-citations 1ef5" style="background-color:#fffaf0;"></div> | ||
+ | == References == | ||
+ | <references/> | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> |
Current revision
SOLUTION STRUCTURE OF THE RAS-BINDING DOMAIN OF RGL
|
Categories: Large Structures | Mus musculus | Endo M | Ito Y | Kigawa T | Kikuchi A | Shirouzu M | Yokoyama S