9bbm

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
m (Protected "9bbm" [edit=sysop:move=sysop])
Current revision (08:42, 9 May 2024) (edit) (undo)
 
(One intermediate revision not shown.)
Line 1: Line 1:
-
'''Unreleased structure'''
 
-
The entry 9bbm is ON HOLD
+
==PHF filament generated from 4E-Tau(297-407) under neutral Mg2+ condition==
 +
<StructureSection load='9bbm' size='340' side='right'caption='[[9bbm]], [[Resolution|resolution]] 3.20&Aring;' scene=''>
 +
== Structural highlights ==
 +
<table><tr><td colspan='2'>[[9bbm]] is a 6 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=9BBM OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=9BBM FirstGlance]. <br>
 +
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Electron Microscopy, [[Resolution|Resolution]] 3.2&#8491;</td></tr>
 +
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=9bbm FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=9bbm OCA], [https://pdbe.org/9bbm PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=9bbm RCSB], [https://www.ebi.ac.uk/pdbsum/9bbm PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=9bbm ProSAT]</span></td></tr>
 +
</table>
 +
== Disease ==
 +
[https://www.uniprot.org/uniprot/TAU_HUMAN TAU_HUMAN] Note=In Alzheimer disease, the neuronal cytoskeleton in the brain is progressively disrupted and replaced by tangles of paired helical filaments (PHF) and straight filaments, mainly composed of hyperphosphorylated forms of TAU (PHF-TAU or AD P-TAU). O-GlcNAcylation is greatly reduced in Alzheimer disease brain cerebral cortex leading to an increase in TAU/MAPT phosphorylations.<ref>PMID:19451179</ref> <ref>PMID:2484340</ref> <ref>PMID:14517953</ref> Defects in MAPT are a cause of frontotemporal dementia (FTD) [MIM:[https://omim.org/entry/600274 600274]; also called frontotemporal dementia (FTD), pallido-ponto-nigral degeneration (PPND) or historically termed Pick complex. This form of frontotemporal dementia is characterized by presenile dementia with behavioral changes, deterioration of cognitive capacities and loss of memory. In some cases, parkinsonian symptoms are prominent. Neuropathological changes include frontotemporal atrophy often associated with atrophy of the basal ganglia, substantia nigra, amygdala. In most cases, protein tau deposits are found in glial cells and/or neurons.<ref>PMID:19451179</ref> <ref>PMID:2484340</ref> <ref>PMID:14517953</ref> <ref>PMID:9629852</ref> <ref>PMID:9736786</ref> <ref>PMID:9641683</ref> <ref>PMID:9789048</ref> <ref>PMID:9973279</ref> <ref>PMID:10553987</ref> <ref>PMID:10214944</ref> <ref>PMID:10374757</ref> <ref>PMID:10489057</ref> <ref>PMID:10208578</ref> <ref>PMID:11117541</ref> <ref>PMID:10802785</ref> <ref>PMID:11071507</ref> <ref>PMID:11585254</ref> <ref>PMID:11278002</ref> <ref>PMID:12473774</ref> <ref>PMID:11921059</ref> <ref>PMID:11906000</ref> <ref>PMID:11889249</ref> <ref>PMID:12509859</ref> <ref>PMID:16240366</ref> <ref>PMID:15883319</ref> Defects in MAPT are a cause of Pick disease of the brain (PIDB) [MIM:[https://omim.org/entry/172700 172700]. It is a rare form of dementia pathologically defined by severe atrophy, neuronal loss and gliosis. It is characterized by the occurrence of tau-positive inclusions, swollen neurons (Pick cells) and argentophilic neuronal inclusions known as Pick bodies that disproportionally affect the frontal and temporal cortical regions. Clinical features include aphasia, apraxia, confusion, anomia, memory loss and personality deterioration.<ref>PMID:19451179</ref> <ref>PMID:2484340</ref> <ref>PMID:14517953</ref> <ref>PMID:10604746</ref> <ref>PMID:11117542</ref> <ref>PMID:11089577</ref> <ref>PMID:11601501</ref> <ref>PMID:11891833</ref> Note=Defects in MAPT are a cause of corticobasal degeneration (CBD). It is marked by extrapyramidal signs and apraxia and can be associated with memory loss. Neuropathologic features may overlap Alzheimer disease, progressive supranuclear palsy, and Parkinson disease.<ref>PMID:19451179</ref> <ref>PMID:2484340</ref> <ref>PMID:14517953</ref> Defects in MAPT are a cause of progressive supranuclear palsy type 1 (PSNP1) [MIM:[https://omim.org/entry/601104 601104]; also abbreviated as PSP and also known as Steele-Richardson-Olszewski syndrome. PSNP1 is characterized by akinetic-rigid syndrome, supranuclear gaze palsy, pyramidal tract dysfunction, pseudobulbar signs and cognitive capacities deterioration. Neurofibrillary tangles and gliosis but no amyloid plaques are found in diseased brains. Most cases appear to be sporadic, with a significant association with a common haplotype including the MAPT gene and the flanking regions. Familial cases show an autosomal dominant pattern of transmission with incomplete penetrance; genetic analysis of a few cases showed the occurrence of tau mutations, including a deletion of Asn-613.<ref>PMID:19451179</ref> <ref>PMID:2484340</ref> <ref>PMID:14517953</ref> <ref>PMID:10534245</ref> <ref>PMID:11220749</ref> <ref>PMID:12325083</ref> <ref>PMID:14991829</ref> <ref>PMID:14991828</ref> <ref>PMID:16157753</ref> Defects in MAPT are a cause of Parkinson-dementia syndrome (PARDE) [MIM:[https://omim.org/entry/260540 260540]. A syndrome characterized by parkinsonism tremor, rigidity, dementia, ophthalmoparesis and pyramidal signs. Neurofibrillary degeneration occurs in the hippocampus, basal ganglia and brainstem nuclei.<ref>PMID:19451179</ref> <ref>PMID:2484340</ref> <ref>PMID:14517953</ref>
 +
== Function ==
 +
[https://www.uniprot.org/uniprot/TAU_HUMAN TAU_HUMAN] Promotes microtubule assembly and stability, and might be involved in the establishment and maintenance of neuronal polarity. The C-terminus binds axonal microtubules while the N-terminus binds neural plasma membrane components, suggesting that tau functions as a linker protein between both. Axonal polarity is predetermined by TAU/MAPT localization (in the neuronal cell) in the domain of the cell body defined by the centrosome. The short isoforms allow plasticity of the cytoskeleton whereas the longer isoforms may preferentially play a role in its stabilization.<ref>PMID:21985311</ref>
 +
<div style="background-color:#fffaf0;">
 +
== Publication Abstract from PubMed ==
 +
In the Alzheimer's disease (AD) brain, the microtubule-associated protein tau aggregates into paired helical filaments (PHFs) in which each protofilament has a C-shaped conformation. In vitro assembly of tau fibrils adopting this fold is highly valuable for both fundamental and applied studies of AD without requiring patient-brain extracted fibrils. To date, reported methods for forming AD-fold tau fibrils have been irreproducible and sensitive to subtle variations in fibrillization conditions. Here we describe a route to reproducibly assemble tau fibrils adopting the AD fold on the multi-milligram scale. We investigated the fibrilization conditions of two constructs, and found that a tau (297-407) construct that contains four AD phospho-mimetic glutamate mutations robustly formed the C-shaped conformation. Two- and three-dimensional correlation solid-state NMR spectra show a single predominant set of chemical shifts, indicating a single molecular conformation. Negative-stain electron microscopy and cryoelectron microscopy data confirm that the protofilament formed by 4E-tau (297-407) adopts the C-shaped conformation, which associates into paired, triple and quadruple helical filaments. In comparison, NMR spectra indicate that a previously reported construct, tau (297-391), forms a mixture of a four-layered dimer structure and the C-shaped structure, whose populations are highly sensitive to the environmental conditions. The determination of the NMR chemical shifts of the AD-fold tau opens the possibility for future studies of tau fibril conformations and ligand binding by NMR. The quantitative assembly of tau fibrils adopting the AD fold should facilitate the development of diagnostic and therapeutic compounds that target AD tau.
-
Authors: Duan, P., El Mammeri, N.
+
Milligram-Scale Assembly and NMR Fingerprint of Tau Fibrils Adopting the Alzheimer's Disease Fold.,Duan P, El Mammeri N, Hong M J Biol Chem. 2024 Apr 26:107326. doi: 10.1016/j.jbc.2024.107326. PMID:38679331<ref>PMID:38679331</ref>
-
Description: THF filament generated from 4E-Tau(297-407) under neutral Mg2+ condition
+
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
-
[[Category: Unreleased Structures]]
+
</div>
-
[[Category: Duan, P]]
+
<div class="pdbe-citations 9bbm" style="background-color:#fffaf0;"></div>
-
[[Category: El Mammeri, N]]
+
== References ==
 +
<references/>
 +
__TOC__
 +
</StructureSection>
 +
[[Category: Homo sapiens]]
 +
[[Category: Large Structures]]
 +
[[Category: Duan P]]
 +
[[Category: El Mammeri N]]

Current revision

PHF filament generated from 4E-Tau(297-407) under neutral Mg2+ condition

PDB ID 9bbm

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools