1prs
From Proteopedia
(Difference between revisions)
Line 20: | Line 20: | ||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1prs ConSurf]. | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1prs ConSurf]. | ||
<div style="clear:both"></div> | <div style="clear:both"></div> | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | BACKGROUND: Protein S is a developmentally-regulated Ca(2+)-binding protein of the soil bacterium Myxococcus xanthus. It functions by forming protective, multilayer spore surface assemblies which may additionally act as a cell-cell adhesive. Protein S is evolutionarily related to vertebrate lens beta gamma-crystallins. RESULTS: The three-dimensional solution structure of Ca(2+)-loaded protein S has been determined using multi-dimensional heteronuclear NMR spectroscopy. (Sixty structures were calculated, from which thirty were selected with a root mean square difference from the mean of 0.38 A for backbone atoms and 1.22 A for all non-hydrogen atoms.) The structure was analyzed and compared in detail with X-ray crystallographic structures of beta gamma-crystallins. The two internally homologous domains of protein S were compared, and hydrophobic cores, domain interfaces, surface ion pairing, amino-aromatic interactions and potential modes of multimerization are discussed. CONCLUSIONS: Structural features of protein S described here help to explain its overall thermostability, as well as the higher stability and Ca2+ affinity of the amino-terminal domain relative to the carboxy-terminal domain. Two potential modes of multimerization are proposed involving cross-linking of protein S molecules through surface Ca(2+)-binding sites and formation of the intramolecular protein S or gamma B-crystallin interdomain interface in an intermolecular content. This structural analysis may also have implications for Ca(2+)-dependent cell-cell interactions mediated by the vertebrate cadherins and Dictyostelium discoideum protein gp24. | ||
+ | |||
+ | NMR-derived three-dimensional solution structure of protein S complexed with calcium.,Bagby S, Harvey TS, Eagle SG, Inouye S, Ikura M Structure. 1994 Feb 15;2(2):107-22. PMID:8081742<ref>PMID:8081742</ref> | ||
+ | |||
+ | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
+ | </div> | ||
+ | <div class="pdbe-citations 1prs" style="background-color:#fffaf0;"></div> | ||
+ | == References == | ||
+ | <references/> | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> |
Current revision
NMR-DERIVED THREE-DIMENSIONAL SOLUTION STRUCTURE OF PROTEIN S COMPLEXED WITH CALCIUM
|