1r14

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Current revision (07:25, 9 October 2024) (edit) (undo)
 
Line 15: Line 15:
<jmolCheckbox>
<jmolCheckbox>
<scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/r1/1r14_consurf.spt"</scriptWhenChecked>
<scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/r1/1r14_consurf.spt"</scriptWhenChecked>
-
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
+
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked>
<text>to colour the structure by Evolutionary Conservation</text>
<text>to colour the structure by Evolutionary Conservation</text>
</jmolCheckbox>
</jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1r14 ConSurf].
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1r14 ConSurf].
<div style="clear:both"></div>
<div style="clear:both"></div>
 +
<div style="background-color:#fffaf0;">
 +
== Publication Abstract from PubMed ==
 +
Surfactant protein A (SP-A), one of four proteins associated with pulmonary surfactant, binds with high affinity to alveolar phospholipid membranes, positioning the protein at the first line of defense against inhaled pathogens. SP-A exhibits both calcium-dependent carbohydrate binding, a characteristic of the collectin family, and specific interactions with lipid membrane components. The crystal structure of the trimeric carbohydrate recognition domain and neck domain of SP-A was solved to 2.1-A resolution with multiwavelength anomalous dispersion phasing from samarium. Two metal binding sites were identified, one in the highly conserved lectin site and the other 8.5 A away. The interdomain carbohydrate recognition domain-neck angle is significantly less in SP-A than in the homologous collectins, surfactant protein D, and mannose-binding protein. This conformational difference may endow the SP-A trimer with a more extensive hydrophobic surface capable of binding lipophilic membrane components. The appearance of this surface suggests a putative binding region for membrane-derived SP-A ligands such as phosphatidylcholine and lipid A, the endotoxic lipid component of bacterial lipopolysaccharide that mediates the potentially lethal effects of Gram-negative bacterial infection.
 +
 +
Crystal structure of trimeric carbohydrate recognition and neck domains of surfactant protein A.,Head JF, Mealy TR, McCormack FX, Seaton BA J Biol Chem. 2003 Oct 31;278(44):43254-60. Epub 2003 Aug 11. PMID:12913002<ref>PMID:12913002</ref>
 +
 +
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 +
</div>
 +
<div class="pdbe-citations 1r14" style="background-color:#fffaf0;"></div>
 +
== References ==
 +
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>

Current revision

Carbohydrate recognition and neck domains of surfactant protein A (Sp-A) containing samarium

PDB ID 1r14

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools