1rtm

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Current revision (07:20, 30 October 2024) (edit) (undo)
 
(One intermediate revision not shown.)
Line 15: Line 15:
<jmolCheckbox>
<jmolCheckbox>
<scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/rt/1rtm_consurf.spt"</scriptWhenChecked>
<scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/rt/1rtm_consurf.spt"</scriptWhenChecked>
-
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
+
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked>
<text>to colour the structure by Evolutionary Conservation</text>
<text>to colour the structure by Evolutionary Conservation</text>
</jmolCheckbox>
</jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1rtm ConSurf].
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1rtm ConSurf].
<div style="clear:both"></div>
<div style="clear:both"></div>
 +
<div style="background-color:#fffaf0;">
 +
== Publication Abstract from PubMed ==
 +
BACKGROUND: Mannose-binding proteins (MBPs) are C-type (Ca(2+)-dependent) animal lectins found in serum. They recognize cell-surface oligosaccharide structures characteristic of pathogenic bacteria and fungi, and trigger the neutralization of these organisms. Like most lectins, MBPs display weak intrinsic affinity for monovalent sugar ligands, but bind avidly to multivalent ligands. RESULTS: We report physical studies in solution and the crystal structure determined at 1.8 A Bragg spacings of a trimeric fragment of MBP-A, containing the carbohydrate-recognition domain (CRD) and the neck domain that links the carboxy-terminal CRD to the collagen-like portion of the intact molecule. The neck consists of a parallel triple-stranded coiled coil of alpha-helices linked by four residues to the CRD. The isolated neck peptide does not form stable helices in aqueous solution. The previously characterized carbohydrate-binding sites lie at the distal end of the trimer and are separated from each other by 53 A. CONCLUSIONS: The carbohydrate-binding sites in MBP-A are too far apart for a single trimer to bind multivalently to a typical mammalian high-mannose oligosaccharide. Thus MBPs can recognize pathogens selectively by binding avidly only to the widely spaced, repetitive sugar arrays on pathogenic cell surfaces. Sequence alignments reveal that other C-type lectins are likely to have a similar oligomeric structure, but differences in their detailed organization will have an important role in determining their interactions with oligosaccharides.
 +
 +
Trimeric structure of a C-type mannose-binding protein.,Weis WI, Drickamer K Structure. 1994 Dec 15;2(12):1227-40. PMID:7704532<ref>PMID:7704532</ref>
 +
 +
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 +
</div>
 +
<div class="pdbe-citations 1rtm" style="background-color:#fffaf0;"></div>
==See Also==
==See Also==
*[[Mannose-binding protein|Mannose-binding protein]]
*[[Mannose-binding protein|Mannose-binding protein]]
 +
== References ==
 +
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>

Current revision

TRIMERIC STRUCTURE OF A C-TYPE MANNOSE-BINDING PROTEIN

PDB ID 1rtm

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools