1sgc
From Proteopedia
(Difference between revisions)
(One intermediate revision not shown.) | |||
Line 15: | Line 15: | ||
<jmolCheckbox> | <jmolCheckbox> | ||
<scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/sg/1sgc_consurf.spt"</scriptWhenChecked> | <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/sg/1sgc_consurf.spt"</scriptWhenChecked> | ||
- | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/ | + | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked> |
<text>to colour the structure by Evolutionary Conservation</text> | <text>to colour the structure by Evolutionary Conservation</text> | ||
</jmolCheckbox> | </jmolCheckbox> | ||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1sgc ConSurf]. | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1sgc ConSurf]. | ||
<div style="clear:both"></div> | <div style="clear:both"></div> | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | The naturally occurring serine protease inhibitor, chymostatin, forms a hemiacetal adduct with the catalytic Ser195 residue of Streptomyces griseus protease A. Restrained parameter least-squares refinement of this complex to 1.8 A resolution has produced an R index of 0 X 123 for the 11,755 observed reflections. The refined distance of the carbonyl carbon atom of the aldehyde to O gamma of Ser195 is 1 X 62 A. Both the R and S configurations of the hemiacetal occur in equal populations, with the end result resembling the expected configuration for a covalent tetrahedral product intermediate of a true substrate. This study strengthens the concept that serine proteases stabilize a covalent, tetrahedrally co-ordinated species and elaborates those features of the enzyme responsible for this effect. We propose that a major driving force for the hydrolysis of peptide bonds by serine proteases is the non-planar distortion of the scissile bond by the enzyme, which thereby lowers the activation energy barrier to hydrolysis by eliminating the resonance stabilization energy of the peptide bond. | ||
+ | |||
+ | The 1.8 A structure of the complex between chymostatin and Streptomyces griseus protease A. A model for serine protease catalytic tetrahedral intermediates.,Delbaere LT, Brayer GD J Mol Biol. 1985 May 5;183(1):89-103. PMID:3892018<ref>PMID:3892018</ref> | ||
+ | |||
+ | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
+ | </div> | ||
+ | <div class="pdbe-citations 1sgc" style="background-color:#fffaf0;"></div> | ||
==See Also== | ==See Also== | ||
*[[Proteinase 3D structures|Proteinase 3D structures]] | *[[Proteinase 3D structures|Proteinase 3D structures]] | ||
+ | == References == | ||
+ | <references/> | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> |
Current revision
THE 1.8 ANGSTROMS STRUCTURE OF THE COMPLEX BETWEEN CHYMOSTATIN AND STREPTOMYCES GRISEUS PROTEASE A. A MODEL FOR SERINE PROTEASE CATALYTIC TETRAHEDRAL INTERMEDIATES
|