9gla

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
m (Protected "9gla" [edit=sysop:move=sysop])
Current revision (09:22, 2 April 2025) (edit) (undo)
 
(One intermediate revision not shown.)
Line 1: Line 1:
-
'''Unreleased structure'''
 
-
The entry 9gla is ON HOLD
+
==Crystal structure of a CDK2-based CDK7 mimic with inhibitor SY5609==
 +
<StructureSection load='9gla' size='340' side='right'caption='[[9gla]], [[Resolution|resolution]] 2.18&Aring;' scene=''>
 +
== Structural highlights ==
 +
<table><tr><td colspan='2'>[[9gla]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=9GLA OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=9GLA FirstGlance]. <br>
 +
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.18&#8491;</td></tr>
 +
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=NA:SODIUM+ION'>NA</scene>, <scene name='pdbligand=SGM:MONOTHIOGLYCEROL'>SGM</scene>, <scene name='pdbligand=TPO:PHOSPHOTHREONINE'>TPO</scene>, <scene name='pdbligand=YNK:7-dimethylphosphoryl-3-[2-[[(3~{S})-6,6-dimethylpiperidin-3-yl]amino]-5-(trifluoromethyl)pyrimidin-4-yl]-1~{H}-indole-6-carbonitrile'>YNK</scene></td></tr>
 +
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=9gla FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=9gla OCA], [https://pdbe.org/9gla PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=9gla RCSB], [https://www.ebi.ac.uk/pdbsum/9gla PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=9gla ProSAT]</span></td></tr>
 +
</table>
 +
== Function ==
 +
[https://www.uniprot.org/uniprot/CDK2_HUMAN CDK2_HUMAN] Serine/threonine-protein kinase involved in the control of the cell cycle; essential for meiosis, but dispensable for mitosis. Phosphorylates CTNNB1, USP37, p53/TP53, NPM1, CDK7, RB1, BRCA2, MYC, NPAT, EZH2. Interacts with cyclins A, B1, B3, D, or E. Triggers duplication of centrosomes and DNA. Acts at the G1-S transition to promote the E2F transcriptional program and the initiation of DNA synthesis, and modulates G2 progression; controls the timing of entry into mitosis/meiosis by controlling the subsequent activation of cyclin B/CDK1 by phosphorylation, and coordinates the activation of cyclin B/CDK1 at the centrosome and in the nucleus. Crucial role in orchestrating a fine balance between cellular proliferation, cell death, and DNA repair in human embryonic stem cells (hESCs). Activity of CDK2 is maximal during S phase and G2; activated by interaction with cyclin E during the early stages of DNA synthesis to permit G1-S transition, and subsequently activated by cyclin A2 (cyclin A1 in germ cells) during the late stages of DNA replication to drive the transition from S phase to mitosis, the G2 phase. EZH2 phosphorylation promotes H3K27me3 maintenance and epigenetic gene silencing. Phosphorylates CABLES1 (By similarity). Cyclin E/CDK2 prevents oxidative stress-mediated Ras-induced senescence by phosphorylating MYC. Involved in G1-S phase DNA damage checkpoint that prevents cells with damaged DNA from initiating mitosis; regulates homologous recombination-dependent repair by phosphorylating BRCA2, this phosphorylation is low in S phase when recombination is active, but increases as cells progress towards mitosis. In response to DNA damage, double-strand break repair by homologous recombination a reduction of CDK2-mediated BRCA2 phosphorylation. Phosphorylation of RB1 disturbs its interaction with E2F1. NPM1 phosphorylation by cyclin E/CDK2 promotes its dissociates from unduplicated centrosomes, thus initiating centrosome duplication. Cyclin E/CDK2-mediated phosphorylation of NPAT at G1-S transition and until prophase stimulates the NPAT-mediated activation of histone gene transcription during S phase. Required for vitamin D-mediated growth inhibition by being itself inactivated. Involved in the nitric oxide- (NO) mediated signaling in a nitrosylation/activation-dependent manner. USP37 is activated by phosphorylation and thus triggers G1-S transition. CTNNB1 phosphorylation regulates insulin internalization.<ref>PMID:10499802</ref> <ref>PMID:11051553</ref> <ref>PMID:10995386</ref> <ref>PMID:10995387</ref> <ref>PMID:10884347</ref> <ref>PMID:11113184</ref> <ref>PMID:15800615</ref> <ref>PMID:18372919</ref> <ref>PMID:20147522</ref> <ref>PMID:20079829</ref> <ref>PMID:20935635</ref> <ref>PMID:20195506</ref> <ref>PMID:19966300</ref> <ref>PMID:21262353</ref> <ref>PMID:21596315</ref> <ref>PMID:21319273</ref> <ref>PMID:17495531</ref>
 +
<div style="background-color:#fffaf0;">
 +
== Publication Abstract from PubMed ==
 +
Cyclin-dependent kinases (CDKs) regulate cell cycle progression and transcription. CDK7 plays a pivotal role in cell division and proliferation, and the CDK7 gene often exhibits mutations or copy number loss in cancer. Pharmacological targeting of CDK7 has been proposed as a cancer treatment strategy and several inhibitors are currently in clinical trials. As opposed to CDK2, the use of structure-assisted drug design for CDK7 has been limited. We present here CDK2m7, a CDK2-based CDK7 mimic created by mutagenesis of the CDK2 active site pocket. CDK2m7 can be produced in E. coli in a fully active complex with cyclin A2 in high yield and purity. CDK2m7 exhibits a shift in inhibitor selectivity from CDK2 to CDK7 and readily crystallizes. Therefore, it can be used in structure-assisted design of CDK7 inhibitors, as demonstrated by the crystal structure of the complex with inhibitor SY5609. CDK2m7 thus represents a simple and affordable platform for CDK7 rational drug development.
-
Authors:
+
CDK2-based CDK7 mimic as a tool for structural analysis: Biochemical validation and crystal structure with SY5609.,Skerlova J, Krejcirikova V, Perina M, Vojackova V, Fabry M, Krystof V, Jorda R, Rezacova P Int J Biol Macromol. 2025 Mar;294:139117. doi: 10.1016/j.ijbiomac.2024.139117. , Epub 2024 Dec 27. PMID:39733900<ref>PMID:39733900</ref>
-
Description:
+
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
-
[[Category: Unreleased Structures]]
+
</div>
 +
<div class="pdbe-citations 9gla" style="background-color:#fffaf0;"></div>
 +
== References ==
 +
<references/>
 +
__TOC__
 +
</StructureSection>
 +
[[Category: Homo sapiens]]
 +
[[Category: Large Structures]]
 +
[[Category: Krejcirikova V]]
 +
[[Category: Rezacova P]]
 +
[[Category: Skerlova J]]

Current revision

Crystal structure of a CDK2-based CDK7 mimic with inhibitor SY5609

PDB ID 9gla

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools