1udn

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Current revision (23:51, 27 December 2023) (edit) (undo)
 
(12 intermediate revisions not shown.)
Line 1: Line 1:
-
[[Image:1udn.jpg|left|200px]]
 
-
<!--
+
==Crystal structure of the tRNA processing enzyme RNase PH from Aquifex aeolicus==
-
The line below this paragraph, containing "STRUCTURE_1udn", creates the "Structure Box" on the page.
+
<StructureSection load='1udn' size='340' side='right'caption='[[1udn]], [[Resolution|resolution]] 2.30&Aring;' scene=''>
-
You may change the PDB parameter (which sets the PDB file loaded into the applet)
+
== Structural highlights ==
-
or the SCENE parameter (which sets the initial scene displayed when the page is loaded),
+
<table><tr><td colspan='2'>[[1udn]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Aquifex_aeolicus Aquifex aeolicus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1UDN OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1UDN FirstGlance]. <br>
-
or leave the SCENE parameter empty for the default display.
+
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.3&#8491;</td></tr>
-
-->
+
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=PO4:PHOSPHATE+ION'>PO4</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr>
-
{{STRUCTURE_1udn| PDB=1udn | SCENE= }}
+
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1udn FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1udn OCA], [https://pdbe.org/1udn PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1udn RCSB], [https://www.ebi.ac.uk/pdbsum/1udn PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1udn ProSAT], [https://www.topsan.org/Proteins/RSGI/1udn TOPSAN]</span></td></tr>
 +
</table>
 +
== Function ==
 +
[https://www.uniprot.org/uniprot/RNPH_AQUAE RNPH_AQUAE] Phosphorolytic exoribonuclease that removes nucleotide residues following the -CCA terminus of tRNA and adds nucleotides to the ends of RNA molecules by using nucleoside diphosphates as substrates (By similarity).
 +
== Evolutionary Conservation ==
 +
[[Image:Consurf_key_small.gif|200px|right]]
 +
Check<jmol>
 +
<jmolCheckbox>
 +
<scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/ud/1udn_consurf.spt"</scriptWhenChecked>
 +
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
 +
<text>to colour the structure by Evolutionary Conservation</text>
 +
</jmolCheckbox>
 +
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1udn ConSurf].
 +
<div style="clear:both"></div>
 +
<div style="background-color:#fffaf0;">
 +
== Publication Abstract from PubMed ==
 +
RNase PH is one of the exoribonucleases that catalyze the 3' end processing of tRNA in bacteria. RNase PH removes nucleotides following the CCA sequence of tRNA precursors by phosphorolysis and generates mature tRNAs with amino acid acceptor activity. In this study, we determined the crystal structure of Aquifex aeolicus RNase PH bound with a phosphate, a co-substrate, in the active site at 2.3-A resolution. RNase PH has the typical alpha/beta fold, which forms a hexameric ring structure as a trimer of dimers. This ring structure resembles that of the polynucleotide phosphorylase core domain homotrimer, another phosphorolytic exoribonuclease. Four amino acid residues, Arg-86, Gly-124, Thr-125, and Arg-126, of RNase PH are involved in the phosphate-binding site. Mutational analyses of these residues showed their importance in the phosphorolysis reaction. A docking model with the tRNA acceptor stem suggests how RNase PH accommodates substrate RNAs.
-
'''Crystal structure of the tRNA processing enzyme RNase PH from Aquifex aeolicus'''
+
Crystal structure of the tRNA processing enzyme RNase PH from Aquifex aeolicus.,Ishii R, Nureki O, Yokoyama S J Biol Chem. 2003 Aug 22;278(34):32397-404. Epub 2003 May 12. PMID:12746447<ref>PMID:12746447</ref>
-
 
+
-
 
+
-
==Overview==
+
-
RNase PH is one of the exoribonucleases that catalyze the 3' end processing of tRNA in bacteria. RNase PH removes nucleotides following the CCA sequence of tRNA precursors by phosphorolysis and generates mature tRNAs with amino acid acceptor activity. In this study, we determined the crystal structure of Aquifex aeolicus RNase PH bound with a phosphate, a co-substrate, in the active site at 2.3-A resolution. RNase PH has the typical alpha/beta fold, which forms a hexameric ring structure as a trimer of dimers. This ring structure resembles that of the polynucleotide phosphorylase core domain homotrimer, another phosphorolytic exoribonuclease. Four amino acid residues, Arg-86, Gly-124, Thr-125, and Arg-126, of RNase PH are involved in the phosphate-binding site. Mutational analyses of these residues showed their importance in the phosphorolysis reaction. A docking model with the tRNA acceptor stem suggests how RNase PH accommodates substrate RNAs.
+
-
==About this Structure==
+
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
-
1UDN is a [[Single protein]] structure of sequence from [http://en.wikipedia.org/wiki/Aquifex_aeolicus Aquifex aeolicus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1UDN OCA].
+
</div>
 +
<div class="pdbe-citations 1udn" style="background-color:#fffaf0;"></div>
-
==Reference==
+
==See Also==
-
Crystal structure of the tRNA processing enzyme RNase PH from Aquifex aeolicus., Ishii R, Nureki O, Yokoyama S, J Biol Chem. 2003 Aug 22;278(34):32397-404. Epub 2003 May 12. PMID:[http://www.ncbi.nlm.nih.gov/pubmed/12746447 12746447]
+
*[[Ribonuclease 3D structures|Ribonuclease 3D structures]]
 +
== References ==
 +
<references/>
 +
__TOC__
 +
</StructureSection>
[[Category: Aquifex aeolicus]]
[[Category: Aquifex aeolicus]]
-
[[Category: Single protein]]
+
[[Category: Large Structures]]
-
[[Category: TRNA nucleotidyltransferase]]
+
[[Category: Ishii R]]
-
[[Category: Ishii, R.]]
+
[[Category: Nureki O]]
-
[[Category: Nureki, O.]]
+
[[Category: Yokoyama S]]
-
[[Category: RSGI, RIKEN Structural Genomics/Proteomics Initiative.]]
+
-
[[Category: Yokoyama, S.]]
+
-
[[Category: Riken structural genomics/proteomics initiative]]
+
-
[[Category: Rsgi]]
+
-
[[Category: Structural genomic]]
+
-
[[Category: Transferase]]
+
-
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Sat May 3 11:04:28 2008''
+

Current revision

Crystal structure of the tRNA processing enzyme RNase PH from Aquifex aeolicus

PDB ID 1udn

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools