1uuc
From Proteopedia
(Difference between revisions)
(12 intermediate revisions not shown.) | |||
Line 1: | Line 1: | ||
- | [[Image:1uuc.gif|left|200px]] | ||
- | < | + | ==solution structure of a chimeric LEKTI-domain== |
- | + | <StructureSection load='1uuc' size='340' side='right'caption='[[1uuc]]' scene=''> | |
- | + | == Structural highlights == | |
- | + | <table><tr><td colspan='2'>[[1uuc]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1UUC OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1UUC FirstGlance]. <br> | |
- | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Solution NMR, 30 models</td></tr> | |
- | --> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1uuc FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1uuc OCA], [https://pdbe.org/1uuc PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1uuc RCSB], [https://www.ebi.ac.uk/pdbsum/1uuc PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1uuc ProSAT]</span></td></tr> |
- | + | </table> | |
- | + | == Disease == | |
- | + | [https://www.uniprot.org/uniprot/ISK5_HUMAN ISK5_HUMAN] Defects in SPINK5 are the cause of Netherton syndrome (NETH) [MIM:[https://omim.org/entry/256500 256500]. NETH is an autosomal recessive congenital ichthyosis associated with hair shaft abnormalities and anomalies of the immune system. Typical features are ichthyosis linearis circumflexa, ichthyosiform erythroderma, trichorrhexis invaginata (bamboo hair), atopic dermatitis, and hayfever. High postnatal mortality is due to failure to thrive, infections and hypernatremic dehydration.<ref>PMID:10835624</ref> | |
- | + | == Function == | |
- | + | [https://www.uniprot.org/uniprot/ISK5_HUMAN ISK5_HUMAN] Serine protease inhibitor, probably important for the anti-inflammatory and/or antimicrobial protection of mucous epithelia. Contribute to the integrity and protective barrier function of the skin by regulating the activity of defense-activating and desquamation-involved proteases. Inhibits KLK5, it's major target, in a pH-dependent manner. Inhibits KLK7, KLK14 CASP14, and trypsin.<ref>PMID:10419450</ref> <ref>PMID:17596512</ref> <ref>PMID:20533828</ref> | |
- | == | + | == Evolutionary Conservation == |
+ | [[Image:Consurf_key_small.gif|200px|right]] | ||
+ | Check<jmol> | ||
+ | <jmolCheckbox> | ||
+ | <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/uu/1uuc_consurf.spt"</scriptWhenChecked> | ||
+ | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked> | ||
+ | <text>to colour the structure by Evolutionary Conservation</text> | ||
+ | </jmolCheckbox> | ||
+ | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1uuc ConSurf]. | ||
+ | <div style="clear:both"></div> | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
The conversion of an alpha-helical to a beta-strand conformation and the presence of chameleon sequences are fascinating from the perspective that such structural features are implicated in the induction of amyloid-related fatal diseases. In this study, we have determined the solution structure of a chimeric domain (Dom1PI) from the multidomain Kazal-type serine proteinase inhibitor LEKTI using multidimensional NMR spectroscopy. This chimeric protein was constructed to investigate the reasons for differences in the folds of the homologous LEKTI domains 1 and 6 [Lauber, T., et al. (2003) J. Mol. Biol. 328, 205-219]. In Dom1PI, two adjacent phenylalanine residues (F28 and F29) of domain 1 were substituted with proline and isoleucine, respectively, as found in the corresponding P4' and P5' positions of domain 6. The three-dimensional structure of Dom1PI is significantly different from the structure of domain 1 and closely resembles the structure of domain 6, despite the sequence being identical to that of domain 1 except for the two substituted phenylalanine residues and being only 31% identical to the sequence of domain 6. The mutation converted a short 3(10)-helix into an extended loop conformation and parts of the long COOH-terminal alpha-helix of domain 1 into a beta-hairpin structure. The latter conformational change occurs in a sequence stretch distinct from the region containing the substituted residues. Therefore, this switch from an alpha-helical structure to a beta-hairpin structure indicates a chameleon sequence of seven residues. We conclude that the secondary structure of Dom1PI is determined not only by the local protein sequence but also by nonlocal interactions. | The conversion of an alpha-helical to a beta-strand conformation and the presence of chameleon sequences are fascinating from the perspective that such structural features are implicated in the induction of amyloid-related fatal diseases. In this study, we have determined the solution structure of a chimeric domain (Dom1PI) from the multidomain Kazal-type serine proteinase inhibitor LEKTI using multidimensional NMR spectroscopy. This chimeric protein was constructed to investigate the reasons for differences in the folds of the homologous LEKTI domains 1 and 6 [Lauber, T., et al. (2003) J. Mol. Biol. 328, 205-219]. In Dom1PI, two adjacent phenylalanine residues (F28 and F29) of domain 1 were substituted with proline and isoleucine, respectively, as found in the corresponding P4' and P5' positions of domain 6. The three-dimensional structure of Dom1PI is significantly different from the structure of domain 1 and closely resembles the structure of domain 6, despite the sequence being identical to that of domain 1 except for the two substituted phenylalanine residues and being only 31% identical to the sequence of domain 6. The mutation converted a short 3(10)-helix into an extended loop conformation and parts of the long COOH-terminal alpha-helix of domain 1 into a beta-hairpin structure. The latter conformational change occurs in a sequence stretch distinct from the region containing the substituted residues. Therefore, this switch from an alpha-helical structure to a beta-hairpin structure indicates a chameleon sequence of seven residues. We conclude that the secondary structure of Dom1PI is determined not only by the local protein sequence but also by nonlocal interactions. | ||
- | + | The solution structure of a chimeric LEKTI domain reveals a chameleon sequence.,Tidow H, Lauber T, Vitzithum K, Sommerhoff CP, Rosch P, Marx UC Biochemistry. 2004 Sep 7;43(35):11238-47. PMID:15366933<ref>PMID:15366933</ref> | |
- | + | ||
- | + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |
- | + | </div> | |
+ | <div class="pdbe-citations 1uuc" style="background-color:#fffaf0;"></div> | ||
+ | == References == | ||
+ | <references/> | ||
+ | __TOC__ | ||
+ | </StructureSection> | ||
[[Category: Homo sapiens]] | [[Category: Homo sapiens]] | ||
- | [[Category: | + | [[Category: Large Structures]] |
- | [[Category: Lauber | + | [[Category: Lauber T]] |
- | [[Category: Marx | + | [[Category: Marx UC]] |
- | [[Category: Roesch | + | [[Category: Roesch P]] |
- | [[Category: Tidow | + | [[Category: Tidow H]] |
- | + | ||
- | + | ||
- | + | ||
- | + |
Current revision
solution structure of a chimeric LEKTI-domain
|
Categories: Homo sapiens | Large Structures | Lauber T | Marx UC | Roesch P | Tidow H