Main Page

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Current revision (16:30, 30 September 2025) (edit) (undo)
 
(5 intermediate revisions not shown.)
Line 1: Line 1:
<table id="tableColumnsMainPage" style="width:100%;border:2px solid #ddd;border-collapse: collapse;table-layout: fixed; ">
<table id="tableColumnsMainPage" style="width:100%;border:2px solid #ddd;border-collapse: collapse;table-layout: fixed; ">
<tr><td colspan='3' style="background:#F5F5FC;border:1px solid #ddd;">
<tr><td colspan='3' style="background:#F5F5FC;border:1px solid #ddd;">
-
<div style="position:relative; top:0.2em; font-size:1.2em; padding:5px 10px; text-align:right;">
+
<div style="top:+0.2em; font-size:1.2em; padding:5px 5px 5px 10px; float:right;">'''''ISSN 2310-6301'''''</div>
-
<b><i>ISSN 2310-6301</i></b>
+
-
</div>
+
<span style="border:none; margin:0; padding:0.3em; color:#000; font-style: italic; font-size: 1.4em;">
<span style="border:none; margin:0; padding:0.3em; color:#000; font-style: italic; font-size: 1.4em;">

Current revision

ISSN 2310-6301

As life is more than 2D, Proteopedia helps to bridge the gap between 3D structure & function of biomacromolecules

Proteopedia presents this information in a user-friendly way as a collaborative & free 3D-encyclopedia of proteins & other biomolecules.


Selected Research Pages In Journals Education
About this image
Green Fluorescent Protein

by Eran Hodis
Green fluorescent protein (GFP) is a bioluminescent polypeptide isolated from the jellyfish Aequorea victoria. GFP converts the blue chemiluminescence of aequorin into green fluorescent light. In the laboratory, GFP can be incorporated into a variety of biological systems in order to function as a marker protein. Since its discovery in 1962, GFP has become a significant contributor to the research of monitoring gene expression, localization, mobility, traffic, or interactions between various membrane and cytoplasmic proteins.

>>> Visit this page >>>

About this image
Structure of Anticancer Ruthenium Half-Sandwich Complex Bound to Glycogen Synthase Kinase 3ß

G Atilla-Gocumen, L Di Costanzo, E Meggers. J Biol Inorg Chem. 2010 doi: 10.1007/s00775-010-0699-x
A crystal structure of an organometallic half-sandwich ruthenium complex bound to glycogen synthase kinase 3ß (GSK-3ß) reveals that the inhibitor binds to the ATP binding site via an induced fit mechanism utilizing several hydrogen bonds and hydrophobic interactions. Importantly, the metal is not involved in any direct interaction with the protein kinase but fulfills a purely structural role.

>>> Visit this I3DC complement >>>

About this image
Transport of Drugs & Nutrients

Above is a transmembrane protein that takes up, into your intestinal cells, orally consumed peptide nutrients and drugs. Its lumen-face (shown above) opens and binds peptide or drug, then closes, while its cytoplasmic face (opposite end from the above) opens to release its cargo into the intestinal cell, which passes it on into the blood circulation.

>>> See more animations and explanation >>>

How to add content to Proteopedia

Video Guides

Who knows ...

About Interactive 3D Complements - I3DCs

List of I3DCs

How to get an I3DC for your paper

Teaching strategies using Proteopedia

Examples of pages for teaching

How to add content to Proteopedia

About Contact Hot News Table of Contents Structure Index Help

Proteopedia Page Contributors and Editors (what is this?)

Joel L. Sussman, Jaime Prilusky

Personal tools