|
|
| (13 intermediate revisions not shown.) |
| Line 1: |
Line 1: |
| - | [[Image:1ydi.gif|left|200px]] | |
| | | | |
| - | <!--
| + | ==Human Vinculin Head Domain (VH1, 1-258) in Complex with Human Alpha-Actinin's Vinculin-Binding Site (Residues 731-760)== |
| - | The line below this paragraph, containing "STRUCTURE_1ydi", creates the "Structure Box" on the page.
| + | <StructureSection load='1ydi' size='340' side='right'caption='[[1ydi]], [[Resolution|resolution]] 1.80Å' scene=''> |
| - | You may change the PDB parameter (which sets the PDB file loaded into the applet)
| + | == Structural highlights == |
| - | or the SCENE parameter (which sets the initial scene displayed when the page is loaded),
| + | <table><tr><td colspan='2'>[[1ydi]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1YDI OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1YDI FirstGlance]. <br> |
| - | or leave the SCENE parameter empty for the default display.
| + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.8Å</td></tr> |
| - | --> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1ydi FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1ydi OCA], [https://pdbe.org/1ydi PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1ydi RCSB], [https://www.ebi.ac.uk/pdbsum/1ydi PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1ydi ProSAT]</span></td></tr> |
| - | {{STRUCTURE_1ydi| PDB=1ydi | SCENE= }}
| + | </table> |
| | + | == Disease == |
| | + | [https://www.uniprot.org/uniprot/VINC_HUMAN VINC_HUMAN] Defects in VCL are the cause of cardiomyopathy dilated type 1W (CMD1W) [MIM:[https://omim.org/entry/611407 611407]. Dilated cardiomyopathy is a disorder characterized by ventricular dilation and impaired systolic function, resulting in congestive heart failure and arrhythmia. Patients are at risk of premature death.<ref>PMID:11815424</ref> <ref>PMID:16236538</ref> Defects in VCL are the cause of familial hypertrophic cardiomyopathy type 15 (CMH15) [MIM:[https://omim.org/entry/613255 613255]. It is a hereditary heart disorder characterized by ventricular hypertrophy, which is usually asymmetric and often involves the interventricular septum. The symptoms include dyspnea, syncope, collapse, palpitations, and chest pain. They can be readily provoked by exercise. The disorder has inter- and intrafamilial variability ranging from benign to malignant forms with high risk of cardiac failure and sudden cardiac death.<ref>PMID:16712796</ref> |
| | + | == Function == |
| | + | [https://www.uniprot.org/uniprot/VINC_HUMAN VINC_HUMAN] Actin filament (F-actin)-binding protein involved in cell-matrix adhesion and cell-cell adhesion. Regulates cell-surface E-cadherin expression and potentiates mechanosensing by the E-cadherin complex. May also play important roles in cell morphology and locomotion.<ref>PMID:20484056</ref> |
| | + | == Evolutionary Conservation == |
| | + | [[Image:Consurf_key_small.gif|200px|right]] |
| | + | Check<jmol> |
| | + | <jmolCheckbox> |
| | + | <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/yd/1ydi_consurf.spt"</scriptWhenChecked> |
| | + | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> |
| | + | <text>to colour the structure by Evolutionary Conservation</text> |
| | + | </jmolCheckbox> |
| | + | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1ydi ConSurf]. |
| | + | <div style="clear:both"></div> |
| | | | |
| - | '''Human Vinculin Head Domain (VH1, 1-258) in Complex with Human Alpha-Actinin's Vinculin-Binding Site (Residues 731-760)'''
| + | ==See Also== |
| - | | + | *[[Actinin 3D structures|Actinin 3D structures]] |
| - | | + | *[[Vinculin|Vinculin]] |
| - | ==Overview== | + | == References == |
| - | Alpha-actinin and vinculin orchestrate reorganization of the actin cytoskeleton following the formation of adhesion junctions. alpha-Actinin interacts with vinculin through the binding of an alpha-helix (alphaVBS) present within the R4 spectrin repeat of its central rod domain to vinculin's N-terminal seven-helical bundle domain (Vh1). The Vh1:alphaVBS structure suggests that alphaVBS first unravels from its buried location in the triple-helical R4 repeat to allow it to bind to vinculin. alphaVBS binding then induces novel conformational changes in the N-terminal helical bundle of Vh1, which disrupt its intramolecular association with vinculin's tail domain and which differ from the alterations in Vh1 provoked by the binding of talin. Surprisingly, alphaVBS binds to Vh1 in an inverted orientation compared to the binding of talin's VBSs to vinculin. Importantly, the binding of alphaVBS and talin's VBSs to vinculin's Vh1 domain appear to also trigger distinct conformational changes in full-length vinculin, opening up distant regions that are buried in the inactive molecule. The data suggest a model where vinculin's Vh1 domain acts as a molecular switch that undergoes distinct structural changes provoked by talin and alpha-actinin binding in focal adhesions versus adherens junctions, respectively.
| + | <references/> |
| - | | + | __TOC__ |
| - | ==Disease==
| + | </StructureSection> |
| - | Known disease associated with this structure: Glomerulosclerosis, focal segmental, 1 OMIM:[[http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=604638 604638]]
| + | |
| - | | + | |
| - | ==About this Structure==
| + | |
| - | 1YDI is a [[Protein complex]] structure of sequences from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1YDI OCA].
| + | |
| - | | + | |
| - | ==Reference== | + | |
| - | Structural dynamics of alpha-actinin-vinculin interactions., Bois PR, Borgon RA, Vonrhein C, Izard T, Mol Cell Biol. 2005 Jul;25(14):6112-22. PMID:[http://www.ncbi.nlm.nih.gov/pubmed/15988023 15988023]
| + | |
| | [[Category: Homo sapiens]] | | [[Category: Homo sapiens]] |
| - | [[Category: Protein complex]] | + | [[Category: Large Structures]] |
| - | [[Category: Izard, T.]] | + | [[Category: Izard T]] |
| - | [[Category: Cell adhesion]]
| + | |
| - | [[Category: Structural protein]]
| + | |
| - | ''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Sat May 3 16:11:15 2008''
| + | |
| Structural highlights
Disease
VINC_HUMAN Defects in VCL are the cause of cardiomyopathy dilated type 1W (CMD1W) [MIM:611407. Dilated cardiomyopathy is a disorder characterized by ventricular dilation and impaired systolic function, resulting in congestive heart failure and arrhythmia. Patients are at risk of premature death.[1] [2] Defects in VCL are the cause of familial hypertrophic cardiomyopathy type 15 (CMH15) [MIM:613255. It is a hereditary heart disorder characterized by ventricular hypertrophy, which is usually asymmetric and often involves the interventricular septum. The symptoms include dyspnea, syncope, collapse, palpitations, and chest pain. They can be readily provoked by exercise. The disorder has inter- and intrafamilial variability ranging from benign to malignant forms with high risk of cardiac failure and sudden cardiac death.[3]
Function
VINC_HUMAN Actin filament (F-actin)-binding protein involved in cell-matrix adhesion and cell-cell adhesion. Regulates cell-surface E-cadherin expression and potentiates mechanosensing by the E-cadherin complex. May also play important roles in cell morphology and locomotion.[4]
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
See Also
References
- ↑ Olson TM, Illenberger S, Kishimoto NY, Huttelmaier S, Keating MT, Jockusch BM. Metavinculin mutations alter actin interaction in dilated cardiomyopathy. Circulation. 2002 Jan 29;105(4):431-7. PMID:11815424
- ↑ Vasile VC, Will ML, Ommen SR, Edwards WD, Olson TM, Ackerman MJ. Identification of a metavinculin missense mutation, R975W, associated with both hypertrophic and dilated cardiomyopathy. Mol Genet Metab. 2006 Feb;87(2):169-74. Epub 2005 Oct 19. PMID:16236538 doi:S1096-7192(05)00258-1
- ↑ Vasile VC, Ommen SR, Edwards WD, Ackerman MJ. A missense mutation in a ubiquitously expressed protein, vinculin, confers susceptibility to hypertrophic cardiomyopathy. Biochem Biophys Res Commun. 2006 Jul 7;345(3):998-1003. Epub 2006 May 4. PMID:16712796 doi:S0006-291X(06)00981-8
- ↑ Le Clainche C, Dwivedi SP, Didry D, Carlier MF. Vinculin is a dually regulated actin filament barbed end-capping and side-binding protein. J Biol Chem. 2010 Jul 23;285(30):23420-32. doi: 10.1074/jbc.M110.102830. Epub, 2010 May 18. PMID:20484056 doi:10.1074/jbc.M110.102830
|