|
|
(14 intermediate revisions not shown.) |
Line 1: |
Line 1: |
- | [[Image:2a2x.jpg|left|200px]] | |
| | | |
- | <!-- | + | ==Orally Active Thrombin Inhibitors in Complex with Thrombin Inh12== |
- | The line below this paragraph, containing "STRUCTURE_2a2x", creates the "Structure Box" on the page.
| + | <StructureSection load='2a2x' size='340' side='right'caption='[[2a2x]], [[Resolution|resolution]] 2.44Å' scene=''> |
- | You may change the PDB parameter (which sets the PDB file loaded into the applet)
| + | == Structural highlights == |
- | or the SCENE parameter (which sets the initial scene displayed when the page is loaded), | + | <table><tr><td colspan='2'>[[2a2x]] is a 3 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens] and [https://en.wikipedia.org/wiki/Synthetic_construct Synthetic construct]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2A2X OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2A2X FirstGlance]. <br> |
- | or leave the SCENE parameter empty for the default display.
| + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.44Å</td></tr> |
- | -->
| + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ALC:2-AMINO-3-CYCLOHEXYL-PROPIONIC+ACID'>ALC</scene>, <scene name='pdbligand=HYP:4-HYDROXYPROLINE'>HYP</scene>, <scene name='pdbligand=NA9:N-(CARBOXYMETHYL)-3-CYCLOHEXYL-D-ALANYL-N-({6-[AMINO(IMINO)METHYL]PYRIDIN-3-YL}METHYL)-N~2~-METHYL-L-ALANINAMIDE'>NA9</scene>, <scene name='pdbligand=SIN:SUCCINIC+ACID'>SIN</scene>, <scene name='pdbligand=SMF:4-SULFOMETHYL-L-PHENYLALANINE'>SMF</scene></td></tr> |
- | {{STRUCTURE_2a2x| PDB=2a2x | SCENE= }}
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2a2x FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2a2x OCA], [https://pdbe.org/2a2x PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2a2x RCSB], [https://www.ebi.ac.uk/pdbsum/2a2x PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2a2x ProSAT]</span></td></tr> |
| + | </table> |
| + | == Disease == |
| + | [https://www.uniprot.org/uniprot/THRB_HUMAN THRB_HUMAN] Defects in F2 are the cause of factor II deficiency (FA2D) [MIM:[https://omim.org/entry/613679 613679]. It is a very rare blood coagulation disorder characterized by mucocutaneous bleeding symptoms. The severity of the bleeding manifestations correlates with blood factor II levels.<ref>PMID:14962227</ref> <ref>PMID:6405779</ref> <ref>PMID:3771562</ref> <ref>PMID:3567158</ref> <ref>PMID:3801671</ref> <ref>PMID:3242619</ref> <ref>PMID:2719946</ref> <ref>PMID:1354985</ref> <ref>PMID:1421398</ref> <ref>PMID:1349838</ref> <ref>PMID:7865694</ref> <ref>PMID:7792730</ref> Genetic variations in F2 may be a cause of susceptibility to ischemic stroke (ISCHSTR) [MIM:[https://omim.org/entry/601367 601367]; also known as cerebrovascular accident or cerebral infarction. A stroke is an acute neurologic event leading to death of neural tissue of the brain and resulting in loss of motor, sensory and/or cognitive function. Ischemic strokes, resulting from vascular occlusion, is considered to be a highly complex disease consisting of a group of heterogeneous disorders with multiple genetic and environmental risk factors.<ref>PMID:15534175</ref> Defects in F2 are the cause of thrombophilia due to thrombin defect (THPH1) [MIM:[https://omim.org/entry/188050 188050]. It is a multifactorial disorder of hemostasis characterized by abnormal platelet aggregation in response to various agents and recurrent thrombi formation. Note=A common genetic variation in the 3-prime untranslated region of the prothrombin gene is associated with elevated plasma prothrombin levels and an increased risk of venous thrombosis. Defects in F2 are associated with susceptibility to pregnancy loss, recurrent, type 2 (RPRGL2) [MIM:[https://omim.org/entry/614390 614390]. A common complication of pregnancy, resulting in spontaneous abortion before the fetus has reached viability. The term includes all miscarriages from the time of conception until 24 weeks of gestation. Recurrent pregnancy loss is defined as 3 or more consecutive spontaneous abortions.<ref>PMID:11506076</ref> |
| + | == Function == |
| + | [https://www.uniprot.org/uniprot/THRB_HUMAN THRB_HUMAN] Thrombin, which cleaves bonds after Arg and Lys, converts fibrinogen to fibrin and activates factors V, VII, VIII, XIII, and, in complex with thrombomodulin, protein C. Functions in blood homeostasis, inflammation and wound healing.<ref>PMID:2856554</ref> |
| + | == Evolutionary Conservation == |
| + | [[Image:Consurf_key_small.gif|200px|right]] |
| + | Check<jmol> |
| + | <jmolCheckbox> |
| + | <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/a2/2a2x_consurf.spt"</scriptWhenChecked> |
| + | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> |
| + | <text>to colour the structure by Evolutionary Conservation</text> |
| + | </jmolCheckbox> |
| + | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=2a2x ConSurf]. |
| + | <div style="clear:both"></div> |
| + | <div style="background-color:#fffaf0;"> |
| + | == Publication Abstract from PubMed == |
| + | Synthesis and SAR of orally active thrombin inhibitors of the d-Phe-Pro-Arg type with focus on the P2-moiety are described. The unexpected increase in in vitro potency, oral bioavailability, and in vivo activity of inhibitors with dehydroproline as P2-isostere is discussed. Over a period of 24h the antithrombin activity of the most active inhibitors with IC(50)s in the nanomolar range was determined in dogs demonstrating high thrombin inhibitory activity in plasma and an appropriate duration of action after oral administration. |
| | | |
- | '''Orally Active Thrombin Inhibitors in Complex with Thrombin Inh12'''
| + | Orally active thrombin inhibitors. Part 2: optimization of the P2-moiety.,Lange UE, Baucke D, Hornberger W, Mack H, Seitz W, Hoffken HW Bioorg Med Chem Lett. 2006 May 15;16(10):2648-53. Epub 2006 Feb 3. PMID:16460939<ref>PMID:16460939</ref> |
- | | + | |
- | | + | |
- | ==Overview==
| + | |
- | Synthesis and SAR of orally active thrombin inhibitors of the d-Phe-Pro-Arg type with focus on the P2-moiety are described. The unexpected increase in in vitro potency, oral bioavailability, and in vivo activity of inhibitors with dehydroproline as P2-isostere is discussed. Over a period of 24h the antithrombin activity of the most active inhibitors with IC(50)s in the nanomolar range was determined in dogs demonstrating high thrombin inhibitory activity in plasma and an appropriate duration of action after oral administration.
| + | |
| | | |
- | ==About this Structure==
| + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> |
- | 2A2X is a [[Protein complex]] structure of sequences from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2A2X OCA].
| + | </div> |
| + | <div class="pdbe-citations 2a2x" style="background-color:#fffaf0;"></div> |
| | | |
- | ==Reference== | + | ==See Also== |
- | Orally active thrombin inhibitors. Part 2: optimization of the P2-moiety., Lange UE, Baucke D, Hornberger W, Mack H, Seitz W, Hoffken HW, Bioorg Med Chem Lett. 2006 May 15;16(10):2648-53. Epub 2006 Feb 3. PMID:[http://www.ncbi.nlm.nih.gov/pubmed/16460939 16460939]
| + | *[[Thrombin 3D Structures|Thrombin 3D Structures]] |
| + | == References == |
| + | <references/> |
| + | __TOC__ |
| + | </StructureSection> |
| [[Category: Homo sapiens]] | | [[Category: Homo sapiens]] |
- | [[Category: Protein complex]] | + | [[Category: Large Structures]] |
- | [[Category: Thrombin]] | + | [[Category: Synthetic construct]] |
- | [[Category: Baucke, D.]] | + | [[Category: Baucke D]] |
- | [[Category: Hoeffken, H W.]] | + | [[Category: Hoeffken HW]] |
- | [[Category: Hornberger, W.]] | + | [[Category: Hornberger W]] |
- | [[Category: Lange, U E.W.]] | + | [[Category: Lange UEW]] |
- | [[Category: Mack, H.]] | + | [[Category: Mack H]] |
- | [[Category: Seitz, W.]] | + | [[Category: Seitz W]] |
- | [[Category: Blood clotting]]
| + | |
- | [[Category: Serine protease]]
| + | |
- | ''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Sat May 3 18:32:07 2008''
| + | |
| Structural highlights
2a2x is a 3 chain structure with sequence from Homo sapiens and Synthetic construct. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
| Method: | X-ray diffraction, Resolution 2.44Å |
Ligands: | , , , , |
Resources: | FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT |
Disease
THRB_HUMAN Defects in F2 are the cause of factor II deficiency (FA2D) [MIM:613679. It is a very rare blood coagulation disorder characterized by mucocutaneous bleeding symptoms. The severity of the bleeding manifestations correlates with blood factor II levels.[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] Genetic variations in F2 may be a cause of susceptibility to ischemic stroke (ISCHSTR) [MIM:601367; also known as cerebrovascular accident or cerebral infarction. A stroke is an acute neurologic event leading to death of neural tissue of the brain and resulting in loss of motor, sensory and/or cognitive function. Ischemic strokes, resulting from vascular occlusion, is considered to be a highly complex disease consisting of a group of heterogeneous disorders with multiple genetic and environmental risk factors.[13] Defects in F2 are the cause of thrombophilia due to thrombin defect (THPH1) [MIM:188050. It is a multifactorial disorder of hemostasis characterized by abnormal platelet aggregation in response to various agents and recurrent thrombi formation. Note=A common genetic variation in the 3-prime untranslated region of the prothrombin gene is associated with elevated plasma prothrombin levels and an increased risk of venous thrombosis. Defects in F2 are associated with susceptibility to pregnancy loss, recurrent, type 2 (RPRGL2) [MIM:614390. A common complication of pregnancy, resulting in spontaneous abortion before the fetus has reached viability. The term includes all miscarriages from the time of conception until 24 weeks of gestation. Recurrent pregnancy loss is defined as 3 or more consecutive spontaneous abortions.[14]
Function
THRB_HUMAN Thrombin, which cleaves bonds after Arg and Lys, converts fibrinogen to fibrin and activates factors V, VII, VIII, XIII, and, in complex with thrombomodulin, protein C. Functions in blood homeostasis, inflammation and wound healing.[15]
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
Synthesis and SAR of orally active thrombin inhibitors of the d-Phe-Pro-Arg type with focus on the P2-moiety are described. The unexpected increase in in vitro potency, oral bioavailability, and in vivo activity of inhibitors with dehydroproline as P2-isostere is discussed. Over a period of 24h the antithrombin activity of the most active inhibitors with IC(50)s in the nanomolar range was determined in dogs demonstrating high thrombin inhibitory activity in plasma and an appropriate duration of action after oral administration.
Orally active thrombin inhibitors. Part 2: optimization of the P2-moiety.,Lange UE, Baucke D, Hornberger W, Mack H, Seitz W, Hoffken HW Bioorg Med Chem Lett. 2006 May 15;16(10):2648-53. Epub 2006 Feb 3. PMID:16460939[16]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Wang W, Fu Q, Zhou R, Wu W, Ding Q, Hu Y, Wang X, Wang H, Wang Z. Prothrombin Shanghai: hypoprothrombinaemia caused by substitution of Gla29 by Gly. Haemophilia. 2004 Jan;10(1):94-7. PMID:14962227
- ↑ Board PG, Shaw DC. Determination of the amino acid substitution in human prothrombin type 3 (157 Glu leads to Lys) and the localization of a third thrombin cleavage site. Br J Haematol. 1983 Jun;54(2):245-54. PMID:6405779
- ↑ Rabiet MJ, Furie BC, Furie B. Molecular defect of prothrombin Barcelona. Substitution of cysteine for arginine at residue 273. J Biol Chem. 1986 Nov 15;261(32):15045-8. PMID:3771562
- ↑ Miyata T, Morita T, Inomoto T, Kawauchi S, Shirakami A, Iwanaga S. Prothrombin Tokushima, a replacement of arginine-418 by tryptophan that impairs the fibrinogen clotting activity of derived thrombin Tokushima. Biochemistry. 1987 Feb 24;26(4):1117-22. PMID:3567158
- ↑ Inomoto T, Shirakami A, Kawauchi S, Shigekiyo T, Saito S, Miyoshi K, Morita T, Iwanaga S. Prothrombin Tokushima: characterization of dysfunctional thrombin derived from a variant of human prothrombin. Blood. 1987 Feb;69(2):565-9. PMID:3801671
- ↑ Henriksen RA, Mann KG. Identification of the primary structural defect in the dysthrombin thrombin Quick I: substitution of cysteine for arginine-382. Biochemistry. 1988 Dec 27;27(26):9160-5. PMID:3242619
- ↑ Henriksen RA, Mann KG. Substitution of valine for glycine-558 in the congenital dysthrombin thrombin Quick II alters primary substrate specificity. Biochemistry. 1989 Mar 7;28(5):2078-82. PMID:2719946
- ↑ Miyata T, Aruga R, Umeyama H, Bezeaud A, Guillin MC, Iwanaga S. Prothrombin Salakta: substitution of glutamic acid-466 by alanine reduces the fibrinogen clotting activity and the esterase activity. Biochemistry. 1992 Aug 25;31(33):7457-62. PMID:1354985
- ↑ Morishita E, Saito M, Kumabashiri I, Asakura H, Matsuda T, Yamaguchi K. Prothrombin Himi: a compound heterozygote for two dysfunctional prothrombin molecules (Met-337-->Thr and Arg-388-->His). Blood. 1992 Nov 1;80(9):2275-80. PMID:1421398
- ↑ Iwahana H, Yoshimoto K, Shigekiyo T, Shirakami A, Saito S, Itakura M. Detection of a single base substitution of the gene for prothrombin Tokushima. The application of PCR-SSCP for the genetic and molecular analysis of dysprothrombinemia. Int J Hematol. 1992 Feb;55(1):93-100. PMID:1349838
- ↑ James HL, Kim DJ, Zheng DQ, Girolami A. Prothrombin Padua I: incomplete activation due to an amino acid substitution at a factor Xa cleavage site. Blood Coagul Fibrinolysis. 1994 Oct;5(5):841-4. PMID:7865694
- ↑ Degen SJ, McDowell SA, Sparks LM, Scharrer I. Prothrombin Frankfurt: a dysfunctional prothrombin characterized by substitution of Glu-466 by Ala. Thromb Haemost. 1995 Feb;73(2):203-9. PMID:7792730
- ↑ Casas JP, Hingorani AD, Bautista LE, Sharma P. Meta-analysis of genetic studies in ischemic stroke: thirty-two genes involving approximately 18,000 cases and 58,000 controls. Arch Neurol. 2004 Nov;61(11):1652-61. PMID:15534175 doi:61/11/1652
- ↑ Pihusch R, Buchholz T, Lohse P, Rubsamen H, Rogenhofer N, Hasbargen U, Hiller E, Thaler CJ. Thrombophilic gene mutations and recurrent spontaneous abortion: prothrombin mutation increases the risk in the first trimester. Am J Reprod Immunol. 2001 Aug;46(2):124-31. PMID:11506076
- ↑ Glenn KC, Frost GH, Bergmann JS, Carney DH. Synthetic peptides bind to high-affinity thrombin receptors and modulate thrombin mitogenesis. Pept Res. 1988 Nov-Dec;1(2):65-73. PMID:2856554
- ↑ Lange UE, Baucke D, Hornberger W, Mack H, Seitz W, Hoffken HW. Orally active thrombin inhibitors. Part 2: optimization of the P2-moiety. Bioorg Med Chem Lett. 2006 May 15;16(10):2648-53. Epub 2006 Feb 3. PMID:16460939 doi:http://dx.doi.org/10.1016/j.bmcl.2006.01.046
|