|
|
(12 intermediate revisions not shown.) |
Line 1: |
Line 1: |
- | [[Image:2bvw.jpg|left|200px]] | |
| | | |
- | <!-- | + | ==CELLOBIOHYDROLASE II (CEL6A) FROM HUMICOLA INSOLENS IN COMPLEX WITH GLUCOSE AND CELLOTETRAOSE== |
- | The line below this paragraph, containing "STRUCTURE_2bvw", creates the "Structure Box" on the page.
| + | <StructureSection load='2bvw' size='340' side='right'caption='[[2bvw]], [[Resolution|resolution]] 1.70Å' scene=''> |
- | You may change the PDB parameter (which sets the PDB file loaded into the applet)
| + | == Structural highlights == |
- | or the SCENE parameter (which sets the initial scene displayed when the page is loaded),
| + | <table><tr><td colspan='2'>[[2bvw]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Humicola_insolens Humicola insolens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2BVW OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2BVW FirstGlance]. <br> |
- | or leave the SCENE parameter empty for the default display.
| + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.7Å</td></tr> |
- | --> | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=BGC:BETA-D-GLUCOSE'>BGC</scene>, <scene name='pdbligand=GLC:ALPHA-D-GLUCOSE'>GLC</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=NAG:N-ACETYL-D-GLUCOSAMINE'>NAG</scene>, <scene name='pdbligand=PRD_900011:beta-cellotetraose'>PRD_900011</scene>, <scene name='pdbligand=PRD_900014:alpha-cellotriose'>PRD_900014</scene></td></tr> |
- | {{STRUCTURE_2bvw| PDB=2bvw | SCENE= }}
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2bvw FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2bvw OCA], [https://pdbe.org/2bvw PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2bvw RCSB], [https://www.ebi.ac.uk/pdbsum/2bvw PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2bvw ProSAT]</span></td></tr> |
| + | </table> |
| + | == Function == |
| + | [https://www.uniprot.org/uniprot/GUX6_HUMIN GUX6_HUMIN] Plays a central role in the recycling of plant biomass. The biological conversion of cellulose to glucose generally requires three types of hydrolytic enzymes: (1) Endoglucanases which cut internal beta-1,4-glucosidic bonds; (2) Exocellobiohydrolases that cut the dissaccharide cellobiose from the non-reducing end of the cellulose polymer chain; (3) Beta-1,4-glucosidases which hydrolyze the cellobiose and other short cello-oligosaccharides to glucose.<ref>PMID:9882628</ref> |
| + | == Evolutionary Conservation == |
| + | [[Image:Consurf_key_small.gif|200px|right]] |
| + | Check<jmol> |
| + | <jmolCheckbox> |
| + | <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/bv/2bvw_consurf.spt"</scriptWhenChecked> |
| + | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> |
| + | <text>to colour the structure by Evolutionary Conservation</text> |
| + | </jmolCheckbox> |
| + | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=2bvw ConSurf]. |
| + | <div style="clear:both"></div> |
| + | <div style="background-color:#fffaf0;"> |
| + | == Publication Abstract from PubMed == |
| + | The mechanisms of crystalline cellulose degradation by cellulases are of paramount importance for the exploitation of these enzymes in applied processes, such as biomass conversion. Cellulases have traditionally been classified into cellobiohydrolases, which are effective in the degradation of crystalline materials, and endoglucanases, which appear to act on "soluble" regions of the substrate. Humicola insolensCel6A (CBH II) is a cellobiohydrolase from glycoside hydrolase family 6 whose native structure has been determined at 1.9 A resolution [Varrot, A., Hastrup, S., Schulein, M., and Davies, G. J. (1999) Biochem. J. 337, 297-304]. Here we present the structure of the catalytic core domain of Humicola insolens cellobiohydrolase II Cel6A in complex with glucose/cellotetraose at 1.7 A resolution. Crystals of Cel6A, grown in the presence of cellobiose, reveal six binding subsites, with a single glucose moiety bound in the -2 subsite and cellotetraose in the +1 to +4 subsites. The complex structure is strongly supportive of the assignment of Asp 226 as the catalytic acid and consistent with proposals that Asp 405 acts as the catalytic base. The structure undergoes several conformational changes upon substrate binding, the most significant of which is a closing of the two active site loops (residues 174-196 and 397-435) with main-chain movements of up to 4.5 A observed. This complex not only defines the polysaccharide-enzyme interactions but also provides the first three-dimensional demonstration of conformational change in this class of enzymes. |
| | | |
- | '''CELLOBIOHYDROLASE II (CEL6A) FROM HUMICOLA INSOLENS IN COMPLEX WITH GLUCOSE AND CELLOTETRAOSE'''
| + | Structural changes of the active site tunnel of Humicola insolens cellobiohydrolase, Cel6A, upon oligosaccharide binding.,Varrot A, Schulein M, Davies GJ Biochemistry. 1999 Jul 13;38(28):8884-91. PMID:10413461<ref>PMID:10413461</ref> |
- | | + | |
- | | + | |
- | ==Overview==
| + | |
- | The mechanisms of crystalline cellulose degradation by cellulases are of paramount importance for the exploitation of these enzymes in applied processes, such as biomass conversion. Cellulases have traditionally been classified into cellobiohydrolases, which are effective in the degradation of crystalline materials, and endoglucanases, which appear to act on "soluble" regions of the substrate. Humicola insolensCel6A (CBH II) is a cellobiohydrolase from glycoside hydrolase family 6 whose native structure has been determined at 1.9 A resolution [Varrot, A., Hastrup, S., Schulein, M., and Davies, G. J. (1999) Biochem. J. 337, 297-304]. Here we present the structure of the catalytic core domain of Humicola insolens cellobiohydrolase II Cel6A in complex with glucose/cellotetraose at 1.7 A resolution. Crystals of Cel6A, grown in the presence of cellobiose, reveal six binding subsites, with a single glucose moiety bound in the -2 subsite and cellotetraose in the +1 to +4 subsites. The complex structure is strongly supportive of the assignment of Asp 226 as the catalytic acid and consistent with proposals that Asp 405 acts as the catalytic base. The structure undergoes several conformational changes upon substrate binding, the most significant of which is a closing of the two active site loops (residues 174-196 and 397-435) with main-chain movements of up to 4.5 A observed. This complex not only defines the polysaccharide-enzyme interactions but also provides the first three-dimensional demonstration of conformational change in this class of enzymes.
| + | |
| | | |
- | ==About this Structure==
| + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> |
- | 2BVW is a [[Single protein]] structure of sequence from [http://en.wikipedia.org/wiki/Humicola_insolens Humicola insolens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2BVW OCA].
| + | </div> |
| + | <div class="pdbe-citations 2bvw" style="background-color:#fffaf0;"></div> |
| | | |
- | ==Reference== | + | ==See Also== |
- | Structural changes of the active site tunnel of Humicola insolens cellobiohydrolase, Cel6A, upon oligosaccharide binding., Varrot A, Schulein M, Davies GJ, Biochemistry. 1999 Jul 13;38(28):8884-91. PMID:[http://www.ncbi.nlm.nih.gov/pubmed/10413461 10413461]
| + | *[[Cellobiohydrolase 3D structures|Cellobiohydrolase 3D structures]] |
- | [[Category: Cellulose 1,4-beta-cellobiosidase]] | + | == References == |
| + | <references/> |
| + | __TOC__ |
| + | </StructureSection> |
| [[Category: Humicola insolens]] | | [[Category: Humicola insolens]] |
- | [[Category: Single protein]] | + | [[Category: Large Structures]] |
- | [[Category: Davies, G J.]] | + | [[Category: Davies GJ]] |
- | [[Category: Schulein, M.]] | + | [[Category: Schulein M]] |
- | [[Category: Varrot, A.]] | + | [[Category: Varrot A]] |
- | [[Category: Cellobiohydrolase]]
| + | |
- | [[Category: Cellulase]]
| + | |
- | [[Category: Cellulose degradation]]
| + | |
- | [[Category: Glycoside hydrolase family 6]]
| + | |
- | [[Category: Hydrolase]]
| + | |
- | ''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Sat May 3 20:52:34 2008''
| + | |
| Structural highlights
2bvw is a 2 chain structure with sequence from Humicola insolens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
| Method: | X-ray diffraction, Resolution 1.7Å |
Ligands: | , , , , , |
Resources: | FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT |
Function
GUX6_HUMIN Plays a central role in the recycling of plant biomass. The biological conversion of cellulose to glucose generally requires three types of hydrolytic enzymes: (1) Endoglucanases which cut internal beta-1,4-glucosidic bonds; (2) Exocellobiohydrolases that cut the dissaccharide cellobiose from the non-reducing end of the cellulose polymer chain; (3) Beta-1,4-glucosidases which hydrolyze the cellobiose and other short cello-oligosaccharides to glucose.[1]
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
The mechanisms of crystalline cellulose degradation by cellulases are of paramount importance for the exploitation of these enzymes in applied processes, such as biomass conversion. Cellulases have traditionally been classified into cellobiohydrolases, which are effective in the degradation of crystalline materials, and endoglucanases, which appear to act on "soluble" regions of the substrate. Humicola insolensCel6A (CBH II) is a cellobiohydrolase from glycoside hydrolase family 6 whose native structure has been determined at 1.9 A resolution [Varrot, A., Hastrup, S., Schulein, M., and Davies, G. J. (1999) Biochem. J. 337, 297-304]. Here we present the structure of the catalytic core domain of Humicola insolens cellobiohydrolase II Cel6A in complex with glucose/cellotetraose at 1.7 A resolution. Crystals of Cel6A, grown in the presence of cellobiose, reveal six binding subsites, with a single glucose moiety bound in the -2 subsite and cellotetraose in the +1 to +4 subsites. The complex structure is strongly supportive of the assignment of Asp 226 as the catalytic acid and consistent with proposals that Asp 405 acts as the catalytic base. The structure undergoes several conformational changes upon substrate binding, the most significant of which is a closing of the two active site loops (residues 174-196 and 397-435) with main-chain movements of up to 4.5 A observed. This complex not only defines the polysaccharide-enzyme interactions but also provides the first three-dimensional demonstration of conformational change in this class of enzymes.
Structural changes of the active site tunnel of Humicola insolens cellobiohydrolase, Cel6A, upon oligosaccharide binding.,Varrot A, Schulein M, Davies GJ Biochemistry. 1999 Jul 13;38(28):8884-91. PMID:10413461[2]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Varrot A, Hastrup S, Schulein M, Davies GJ. Crystal structure of the catalytic core domain of the family 6 cellobiohydrolase II, Cel6A, from Humicola insolens, at 1.92 A resolution. Biochem J. 1999 Jan 15;337 ( Pt 2):297-304. PMID:9882628
- ↑ Varrot A, Schulein M, Davies GJ. Structural changes of the active site tunnel of Humicola insolens cellobiohydrolase, Cel6A, upon oligosaccharide binding. Biochemistry. 1999 Jul 13;38(28):8884-91. PMID:10413461 doi:10.1021/bi9903998
|