|
|
(11 intermediate revisions not shown.) |
Line 1: |
Line 1: |
- | [[Image:2gu5.gif|left|200px]] | |
| | | |
- | <!-- | + | ==E. coli methionine aminopeptidase in complex with NleP, 1: 1, di-metalated== |
- | The line below this paragraph, containing "STRUCTURE_2gu5", creates the "Structure Box" on the page.
| + | <StructureSection load='2gu5' size='340' side='right'caption='[[2gu5]], [[Resolution|resolution]] 1.60Å' scene=''> |
- | You may change the PDB parameter (which sets the PDB file loaded into the applet) | + | == Structural highlights == |
- | or the SCENE parameter (which sets the initial scene displayed when the page is loaded), | + | <table><tr><td colspan='2'>[[2gu5]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_coli Escherichia coli]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2GU5 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2GU5 FirstGlance]. <br> |
- | or leave the SCENE parameter empty for the default display.
| + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.6Å</td></tr> |
- | --> | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=MN:MANGANESE+(II)+ION'>MN</scene>, <scene name='pdbligand=NA:SODIUM+ION'>NA</scene>, <scene name='pdbligand=NLP:(1-AMINO-PENTYL)-PHOSPHONIC+ACID'>NLP</scene></td></tr> |
- | {{STRUCTURE_2gu5| PDB=2gu5 | SCENE= }}
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2gu5 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2gu5 OCA], [https://pdbe.org/2gu5 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2gu5 RCSB], [https://www.ebi.ac.uk/pdbsum/2gu5 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2gu5 ProSAT]</span></td></tr> |
| + | </table> |
| + | == Function == |
| + | [https://www.uniprot.org/uniprot/MAP1_ECOLI MAP1_ECOLI] Removes the N-terminal methionine from nascent proteins. The N-terminal methionine is often cleaved when the second residue in the primary sequence is small and uncharged (Met-Ala-, Cys, Gly, Pro, Ser, Thr, or Val). Requires deformylation of the N(alpha)-formylated initiator methionine before it can be hydrolyzed.[HAMAP-Rule:MF_01974]<ref>PMID:20521764</ref> <ref>PMID:3027045</ref> |
| + | == Evolutionary Conservation == |
| + | [[Image:Consurf_key_small.gif|200px|right]] |
| + | Check<jmol> |
| + | <jmolCheckbox> |
| + | <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/gu/2gu5_consurf.spt"</scriptWhenChecked> |
| + | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> |
| + | <text>to colour the structure by Evolutionary Conservation</text> |
| + | </jmolCheckbox> |
| + | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=2gu5 ConSurf]. |
| + | <div style="clear:both"></div> |
| + | <div style="background-color:#fffaf0;"> |
| + | == Publication Abstract from PubMed == |
| + | Methionine aminopeptidase (MetAP) removes the amino-terminal methionine residue from newly synthesized proteins, and it is a target for the development of antibacterial and anticancer agents. Available x-ray structures of MetAP, as well as other metalloaminopeptidases, show an active site containing two adjacent divalent metal ions bridged by a water molecule or hydroxide ion. The predominance of dimetalated structures leads naturally to proposed mechanisms of catalysis involving both metal ions. However, kinetic studies indicate that in many cases, only a single metal ion is required for full activity. By limiting the amount of metal ion present during crystal growth, we have now obtained a crystal structure for a complex of Escherichia coli MetAP with norleucine phosphonate, a transition-state analog, and only a single Mn(II) ion bound at the active site in the position designated M1, and three related structures of the same complex that show the transition from the mono-Mn(II) form to the di-Mn(II) form. An unliganded structure was also solved. In view of the full kinetic competence of the monometalated MetAP, the much weaker binding constant for occupancy of the M2 site compared with the M1 site, and the newly determined structures, we propose a revised mechanism of peptide bond hydrolysis by E. coli MetAP. We also suggest that the crystallization of dimetalated forms of metallohydrolases may, in some cases, be a misleading experimental artifact, and caution must be taken when structures are generated to aid in elucidation of reaction mechanisms or to support structure-aided drug design efforts. |
| | | |
- | '''E. coli methionine aminopeptidase in complex with NleP, 1: 1, di-metalated'''
| + | Structural basis of catalysis by monometalated methionine aminopeptidase.,Ye QZ, Xie SX, Ma ZQ, Huang M, Hanzlik RP Proc Natl Acad Sci U S A. 2006 Jun 20;103(25):9470-5. Epub 2006 Jun 12. PMID:16769889<ref>PMID:16769889</ref> |
- | | + | |
- | | + | |
- | ==Overview==
| + | |
- | Methionine aminopeptidase (MetAP) removes the amino-terminal methionine residue from newly synthesized proteins, and it is a target for the development of antibacterial and anticancer agents. Available x-ray structures of MetAP, as well as other metalloaminopeptidases, show an active site containing two adjacent divalent metal ions bridged by a water molecule or hydroxide ion. The predominance of dimetalated structures leads naturally to proposed mechanisms of catalysis involving both metal ions. However, kinetic studies indicate that in many cases, only a single metal ion is required for full activity. By limiting the amount of metal ion present during crystal growth, we have now obtained a crystal structure for a complex of Escherichia coli MetAP with norleucine phosphonate, a transition-state analog, and only a single Mn(II) ion bound at the active site in the position designated M1, and three related structures of the same complex that show the transition from the mono-Mn(II) form to the di-Mn(II) form. An unliganded structure was also solved. In view of the full kinetic competence of the monometalated MetAP, the much weaker binding constant for occupancy of the M2 site compared with the M1 site, and the newly determined structures, we propose a revised mechanism of peptide bond hydrolysis by E. coli MetAP. We also suggest that the crystallization of dimetalated forms of metallohydrolases may, in some cases, be a misleading experimental artifact, and caution must be taken when structures are generated to aid in elucidation of reaction mechanisms or to support structure-aided drug design efforts.
| + | |
| | | |
- | ==About this Structure==
| + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> |
- | 2GU5 is a [[Single protein]] structure of sequence from [http://en.wikipedia.org/wiki/Escherichia_coli Escherichia coli]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2GU5 OCA].
| + | </div> |
| + | <div class="pdbe-citations 2gu5" style="background-color:#fffaf0;"></div> |
| | | |
- | ==Reference== | + | ==See Also== |
- | Structural basis of catalysis by monometalated methionine aminopeptidase., Ye QZ, Xie SX, Ma ZQ, Huang M, Hanzlik RP, Proc Natl Acad Sci U S A. 2006 Jun 20;103(25):9470-5. Epub 2006 Jun 12. PMID:[http://www.ncbi.nlm.nih.gov/pubmed/16769889 16769889]
| + | *[[Aminopeptidase 3D structures|Aminopeptidase 3D structures]] |
| + | == References == |
| + | <references/> |
| + | __TOC__ |
| + | </StructureSection> |
| [[Category: Escherichia coli]] | | [[Category: Escherichia coli]] |
- | [[Category: Methionyl aminopeptidase]] | + | [[Category: Large Structures]] |
- | [[Category: Single protein]]
| + | [[Category: Ye QZ]] |
- | [[Category: Ye, Q Z.]] | + | |
- | [[Category: Enzyme-inhibitor complex]]
| + | |
- | [[Category: Hydrolase]]
| + | |
- | [[Category: Metalloenzyme]]
| + | |
- | [[Category: Mono-metalated]]
| + | |
- | [[Category: Mononuclear]]
| + | |
- | ''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Sun May 4 05:32:29 2008''
| + | |
| Structural highlights
Function
MAP1_ECOLI Removes the N-terminal methionine from nascent proteins. The N-terminal methionine is often cleaved when the second residue in the primary sequence is small and uncharged (Met-Ala-, Cys, Gly, Pro, Ser, Thr, or Val). Requires deformylation of the N(alpha)-formylated initiator methionine before it can be hydrolyzed.[HAMAP-Rule:MF_01974][1] [2]
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
Methionine aminopeptidase (MetAP) removes the amino-terminal methionine residue from newly synthesized proteins, and it is a target for the development of antibacterial and anticancer agents. Available x-ray structures of MetAP, as well as other metalloaminopeptidases, show an active site containing two adjacent divalent metal ions bridged by a water molecule or hydroxide ion. The predominance of dimetalated structures leads naturally to proposed mechanisms of catalysis involving both metal ions. However, kinetic studies indicate that in many cases, only a single metal ion is required for full activity. By limiting the amount of metal ion present during crystal growth, we have now obtained a crystal structure for a complex of Escherichia coli MetAP with norleucine phosphonate, a transition-state analog, and only a single Mn(II) ion bound at the active site in the position designated M1, and three related structures of the same complex that show the transition from the mono-Mn(II) form to the di-Mn(II) form. An unliganded structure was also solved. In view of the full kinetic competence of the monometalated MetAP, the much weaker binding constant for occupancy of the M2 site compared with the M1 site, and the newly determined structures, we propose a revised mechanism of peptide bond hydrolysis by E. coli MetAP. We also suggest that the crystallization of dimetalated forms of metallohydrolases may, in some cases, be a misleading experimental artifact, and caution must be taken when structures are generated to aid in elucidation of reaction mechanisms or to support structure-aided drug design efforts.
Structural basis of catalysis by monometalated methionine aminopeptidase.,Ye QZ, Xie SX, Ma ZQ, Huang M, Hanzlik RP Proc Natl Acad Sci U S A. 2006 Jun 20;103(25):9470-5. Epub 2006 Jun 12. PMID:16769889[3]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Xiao Q, Zhang F, Nacev BA, Liu JO, Pei D. Protein N-terminal processing: substrate specificity of Escherichia coli and human methionine aminopeptidases. Biochemistry. 2010 Jul 6;49(26):5588-99. doi: 10.1021/bi1005464. PMID:20521764 doi:http://dx.doi.org/10.1021/bi1005464
- ↑ Ben-Bassat A, Bauer K, Chang SY, Myambo K, Boosman A, Chang S. Processing of the initiation methionine from proteins: properties of the Escherichia coli methionine aminopeptidase and its gene structure. J Bacteriol. 1987 Feb;169(2):751-7. PMID:3027045
- ↑ Ye QZ, Xie SX, Ma ZQ, Huang M, Hanzlik RP. Structural basis of catalysis by monometalated methionine aminopeptidase. Proc Natl Acad Sci U S A. 2006 Jun 20;103(25):9470-5. Epub 2006 Jun 12. PMID:16769889
|