|
|
(14 intermediate revisions not shown.) |
Line 1: |
Line 1: |
- | [[Image:2hav.gif|left|200px]] | |
| | | |
- | <!-- | + | ==Apo-Human Serum Transferrin (Glycosylated)== |
- | The line below this paragraph, containing "STRUCTURE_2hav", creates the "Structure Box" on the page.
| + | <StructureSection load='2hav' size='340' side='right'caption='[[2hav]], [[Resolution|resolution]] 2.70Å' scene=''> |
- | You may change the PDB parameter (which sets the PDB file loaded into the applet) | + | == Structural highlights == |
- | or the SCENE parameter (which sets the initial scene displayed when the page is loaded),
| + | <table><tr><td colspan='2'>[[2hav]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2HAV OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2HAV FirstGlance]. <br> |
- | or leave the SCENE parameter empty for the default display.
| + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.7Å</td></tr> |
- | --> | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CIT:CITRIC+ACID'>CIT</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene></td></tr> |
- | {{STRUCTURE_2hav| PDB=2hav | SCENE= }}
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2hav FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2hav OCA], [https://pdbe.org/2hav PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2hav RCSB], [https://www.ebi.ac.uk/pdbsum/2hav PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2hav ProSAT]</span></td></tr> |
| + | </table> |
| + | == Disease == |
| + | [https://www.uniprot.org/uniprot/TRFE_HUMAN TRFE_HUMAN] Defects in TF are the cause of atransferrinemia (ATRAF) [MIM:[https://omim.org/entry/209300 209300]. Atransferrinemia is rare autosomal recessive disorder characterized by iron overload and hypochromic anemia.<ref>PMID:11110675</ref> <ref>PMID:15466165</ref> |
| + | == Function == |
| + | [https://www.uniprot.org/uniprot/TRFE_HUMAN TRFE_HUMAN] Transferrins are iron binding transport proteins which can bind two Fe(3+) ions in association with the binding of an anion, usually bicarbonate. It is responsible for the transport of iron from sites of absorption and heme degradation to those of storage and utilization. Serum transferrin may also have a further role in stimulating cell proliferation. |
| + | == Evolutionary Conservation == |
| + | [[Image:Consurf_key_small.gif|200px|right]] |
| + | Check<jmol> |
| + | <jmolCheckbox> |
| + | <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/ha/2hav_consurf.spt"</scriptWhenChecked> |
| + | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked> |
| + | <text>to colour the structure by Evolutionary Conservation</text> |
| + | </jmolCheckbox> |
| + | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=2hav ConSurf]. |
| + | <div style="clear:both"></div> |
| + | <div style="background-color:#fffaf0;"> |
| + | == Publication Abstract from PubMed == |
| + | Serum transferrin reversibly binds iron in each of two lobes and delivers it to cells by a receptor-mediated, pH-dependent process. The binding and release of iron result in a large conformational change in which two subdomains in each lobe close or open with a rigid twisting motion around a hinge. We report the structure of human serum transferrin (hTF) lacking iron (apo-hTF), which was independently determined by two methods: 1) the crystal structure of recombinant non-glycosylated apo-hTF was solved at 2.7-A resolution using a multiple wavelength anomalous dispersion phasing strategy, by substituting the nine methionines in hTF with selenomethionine and 2) the structure of glycosylated apo-hTF (isolated from serum) was determined to a resolution of 2.7A by molecular replacement using the human apo-N-lobe and the rabbit holo-C1-subdomain as search models. These two crystal structures are essentially identical. They represent the first published model for full-length human transferrin and reveal that, in contrast to family members (human lactoferrin and hen ovotransferrin), both lobes are almost equally open: 59.4 degrees and 49.5 degrees rotations are required to open the N- and C-lobes, respectively (compared with closed pig TF). Availability of this structure is critical to a complete understanding of the metal binding properties of each lobe of hTF; the apo-hTF structure suggests that differences in the hinge regions of the N- and C-lobes may influence the rates of iron binding and release. In addition, we evaluate potential interactions between apo-hTF and the human transferrin receptor. |
| | | |
- | '''Apo-Human Serum Transferrin (Glycosylated)'''
| + | The crystal structure of iron-free human serum transferrin provides insight into inter-lobe communication and receptor binding.,Wally J, Halbrooks PJ, Vonrhein C, Rould MA, Everse SJ, Mason AB, Buchanan SK J Biol Chem. 2006 Aug 25;281(34):24934-44. Epub 2006 Jun 22. PMID:16793765<ref>PMID:16793765</ref> |
- | | + | |
- | | + | |
- | ==Overview==
| + | |
- | Serum transferrin reversibly binds iron in each of two lobes and delivers it to cells by a receptor-mediated, pH-dependent process. The binding and release of iron result in a large conformational change in which two subdomains in each lobe close or open with a rigid twisting motion around a hinge. We report the structure of human serum transferrin (hTF) lacking iron (apo-hTF), which was independently determined by two methods: 1) the crystal structure of recombinant non-glycosylated apo-hTF was solved at 2.7-A resolution using a multiple wavelength anomalous dispersion phasing strategy, by substituting the nine methionines in hTF with selenomethionine and 2) the structure of glycosylated apo-hTF (isolated from serum) was determined to a resolution of 2.7A by molecular replacement using the human apo-N-lobe and the rabbit holo-C1-subdomain as search models. These two crystal structures are essentially identical. They represent the first published model for full-length human transferrin and reveal that, in contrast to family members (human lactoferrin and hen ovotransferrin), both lobes are almost equally open: 59.4 degrees and 49.5 degrees rotations are required to open the N- and C-lobes, respectively (compared with closed pig TF). Availability of this structure is critical to a complete understanding of the metal binding properties of each lobe of hTF; the apo-hTF structure suggests that differences in the hinge regions of the N- and C-lobes may influence the rates of iron binding and release. In addition, we evaluate potential interactions between apo-hTF and the human transferrin receptor.
| + | |
| | | |
- | ==About this Structure==
| + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> |
- | 2HAV is a [[Single protein]] structure of sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2HAV OCA].
| + | </div> |
| + | <div class="pdbe-citations 2hav" style="background-color:#fffaf0;"></div> |
| | | |
- | ==Reference== | + | ==See Also== |
- | The crystal structure of iron-free human serum transferrin provides insight into inter-lobe communication and receptor binding., Wally J, Halbrooks PJ, Vonrhein C, Rould MA, Everse SJ, Mason AB, Buchanan SK, J Biol Chem. 2006 Aug 25;281(34):24934-44. Epub 2006 Jun 22. PMID:[http://www.ncbi.nlm.nih.gov/pubmed/16793765 16793765]
| + | *[[Transferrin 3D structures|Transferrin 3D structures]] |
| + | == References == |
| + | <references/> |
| + | __TOC__ |
| + | </StructureSection> |
| [[Category: Homo sapiens]] | | [[Category: Homo sapiens]] |
- | [[Category: Single protein]] | + | [[Category: Large Structures]] |
- | [[Category: Everse, S J.]] | + | [[Category: Everse SJ]] |
- | [[Category: Wally, J.]] | + | [[Category: Wally J]] |
- | [[Category: Apo]]
| + | |
- | [[Category: Human]]
| + | |
- | [[Category: Iron transporter]]
| + | |
- | [[Category: Iron-free]]
| + | |
- | [[Category: Serotransferrin]]
| + | |
- | ''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Sun May 4 06:04:14 2008''
| + | |
| Structural highlights
Disease
TRFE_HUMAN Defects in TF are the cause of atransferrinemia (ATRAF) [MIM:209300. Atransferrinemia is rare autosomal recessive disorder characterized by iron overload and hypochromic anemia.[1] [2]
Function
TRFE_HUMAN Transferrins are iron binding transport proteins which can bind two Fe(3+) ions in association with the binding of an anion, usually bicarbonate. It is responsible for the transport of iron from sites of absorption and heme degradation to those of storage and utilization. Serum transferrin may also have a further role in stimulating cell proliferation.
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
Serum transferrin reversibly binds iron in each of two lobes and delivers it to cells by a receptor-mediated, pH-dependent process. The binding and release of iron result in a large conformational change in which two subdomains in each lobe close or open with a rigid twisting motion around a hinge. We report the structure of human serum transferrin (hTF) lacking iron (apo-hTF), which was independently determined by two methods: 1) the crystal structure of recombinant non-glycosylated apo-hTF was solved at 2.7-A resolution using a multiple wavelength anomalous dispersion phasing strategy, by substituting the nine methionines in hTF with selenomethionine and 2) the structure of glycosylated apo-hTF (isolated from serum) was determined to a resolution of 2.7A by molecular replacement using the human apo-N-lobe and the rabbit holo-C1-subdomain as search models. These two crystal structures are essentially identical. They represent the first published model for full-length human transferrin and reveal that, in contrast to family members (human lactoferrin and hen ovotransferrin), both lobes are almost equally open: 59.4 degrees and 49.5 degrees rotations are required to open the N- and C-lobes, respectively (compared with closed pig TF). Availability of this structure is critical to a complete understanding of the metal binding properties of each lobe of hTF; the apo-hTF structure suggests that differences in the hinge regions of the N- and C-lobes may influence the rates of iron binding and release. In addition, we evaluate potential interactions between apo-hTF and the human transferrin receptor.
The crystal structure of iron-free human serum transferrin provides insight into inter-lobe communication and receptor binding.,Wally J, Halbrooks PJ, Vonrhein C, Rould MA, Everse SJ, Mason AB, Buchanan SK J Biol Chem. 2006 Aug 25;281(34):24934-44. Epub 2006 Jun 22. PMID:16793765[3]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Beutler E, Gelbart T, Lee P, Trevino R, Fernandez MA, Fairbanks VF. Molecular characterization of a case of atransferrinemia. Blood. 2000 Dec 15;96(13):4071-4. PMID:11110675
- ↑ Knisely AS, Gelbart T, Beutler E. Molecular characterization of a third case of human atransferrinemia. Blood. 2004 Oct 15;104(8):2607. PMID:15466165 doi:10.1182/blood-2004-05-1751
- ↑ Wally J, Halbrooks PJ, Vonrhein C, Rould MA, Everse SJ, Mason AB, Buchanan SK. The crystal structure of iron-free human serum transferrin provides insight into inter-lobe communication and receptor binding. J Biol Chem. 2006 Aug 25;281(34):24934-44. Epub 2006 Jun 22. PMID:16793765 doi:10.1074/jbc.M604592200
|