2qfs

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Current revision (11:30, 30 August 2023) (edit) (undo)
 
(10 intermediate revisions not shown.)
Line 1: Line 1:
-
[[Image:2qfs.jpg|left|200px]]
 
-
<!--
+
==E.coli EPSP synthase Pro101Ser liganded with S3P==
-
The line below this paragraph, containing "STRUCTURE_2qfs", creates the "Structure Box" on the page.
+
<StructureSection load='2qfs' size='340' side='right'caption='[[2qfs]], [[Resolution|resolution]] 1.55&Aring;' scene=''>
-
You may change the PDB parameter (which sets the PDB file loaded into the applet)
+
== Structural highlights ==
-
or the SCENE parameter (which sets the initial scene displayed when the page is loaded),
+
<table><tr><td colspan='2'>[[2qfs]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_coli_K-12 Escherichia coli K-12]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2QFS OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2QFS FirstGlance]. <br>
-
or leave the SCENE parameter empty for the default display.
+
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.55&#8491;</td></tr>
-
-->
+
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=FMT:FORMIC+ACID'>FMT</scene>, <scene name='pdbligand=S3P:SHIKIMATE-3-PHOSPHATE'>S3P</scene></td></tr>
-
{{STRUCTURE_2qfs| PDB=2qfs | SCENE= }}
+
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2qfs FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2qfs OCA], [https://pdbe.org/2qfs PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2qfs RCSB], [https://www.ebi.ac.uk/pdbsum/2qfs PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2qfs ProSAT]</span></td></tr>
 +
</table>
 +
== Function ==
 +
[https://www.uniprot.org/uniprot/AROA_ECOLI AROA_ECOLI]
 +
== Evolutionary Conservation ==
 +
[[Image:Consurf_key_small.gif|200px|right]]
 +
Check<jmol>
 +
<jmolCheckbox>
 +
<scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/qf/2qfs_consurf.spt"</scriptWhenChecked>
 +
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
 +
<text>to colour the structure by Evolutionary Conservation</text>
 +
</jmolCheckbox>
 +
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=2qfs ConSurf].
 +
<div style="clear:both"></div>
 +
<div style="background-color:#fffaf0;">
 +
== Publication Abstract from PubMed ==
 +
Glyphosate, the world's most used herbicide, is a massive success because it enables efficient weed control with minimal animal and environmental toxicity. The molecular target of glyphosate is 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), which catalyzes the sixth step of the shikimate pathway in plants and microorganisms. Glyphosate-tolerant variants of EPSPS constitute the basis of genetically engineered herbicide-tolerant crops. A single-site mutation of Pro(101) in EPSPS (numbering according to the enzyme from Escherichia coli) has been implicated in glyphosate-resistant weeds, but this residue is not directly involved in glyphosate binding, and the basis for this phenomenon has remained unclear in the absence of further kinetic and structural characterization. To probe the effects of mutations at this site, E. coli EPSPS enzymes were produced with glycine, alanine, serine, or leucine substituted for Pro(101). These mutant enzymes were analyzed by steady-state kinetics, and the crystal structures of the substrate binary and substrate.glyphosate ternary complexes of P101S and P101L EPSPS were determined to between 1.5- and 1.6-A resolution. It appears that residues smaller than leucine may be substituted for Pro(101) without decreasing catalytic efficiency. Any mutation at this site results in a structural change in the glyphosate-binding site, shifting Thr(97) and Gly(96) toward the inhibitor molecule. We conclude that the decreased inhibitory potency observed for glyphosate is a result of these mutation-induced long-range structural changes. The implications of our findings concerning the development and spread of glyphosate-resistant weeds are discussed.
-
'''E.coli EPSP synthase Pro101Ser liganded with S3P'''
+
Structural basis of glyphosate tolerance resulting from mutations of Pro101 in Escherichia coli 5-enolpyruvylshikimate-3-phosphate synthase.,Healy-Fried ML, Funke T, Priestman MA, Han H, Schonbrunn E J Biol Chem. 2007 Nov 9;282(45):32949-55. Epub 2007 Sep 12. PMID:17855366<ref>PMID:17855366</ref>
-
 
+
-
 
+
-
==Overview==
+
-
Glyphosate, the world's most used herbicide, is a massive success because it enables efficient weed control with minimal animal and environmental toxicity. The molecular target of glyphosate is 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), which catalyzes the sixth step of the shikimate pathway in plants and microorganisms. Glyphosate-tolerant variants of EPSPS constitute the basis of genetically engineered herbicide-tolerant crops. A single-site mutation of Pro(101) in EPSPS (numbering according to the enzyme from Escherichia coli) has been implicated in glyphosate-resistant weeds, but this residue is not directly involved in glyphosate binding, and the basis for this phenomenon has remained unclear in the absence of further kinetic and structural characterization. To probe the effects of mutations at this site, E. coli EPSPS enzymes were produced with glycine, alanine, serine, or leucine substituted for Pro(101). These mutant enzymes were analyzed by steady-state kinetics, and the crystal structures of the substrate binary and substrate.glyphosate ternary complexes of P101S and P101L EPSPS were determined to between 1.5- and 1.6-A resolution. It appears that residues smaller than leucine may be substituted for Pro(101) without decreasing catalytic efficiency. Any mutation at this site results in a structural change in the glyphosate-binding site, shifting Thr(97) and Gly(96) toward the inhibitor molecule. We conclude that the decreased inhibitory potency observed for glyphosate is a result of these mutation-induced long-range structural changes. The implications of our findings concerning the development and spread of glyphosate-resistant weeds are discussed.
+
-
==About this Structure==
+
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
-
2QFS is a [[Single protein]] structure of sequence from [http://en.wikipedia.org/wiki/Escherichia_coli Escherichia coli]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2QFS OCA].
+
</div>
 +
<div class="pdbe-citations 2qfs" style="background-color:#fffaf0;"></div>
-
==Reference==
+
==See Also==
-
Structural basis of glyphosate tolerance resulting from mutations of Pro101 in Escherichia coli 5-enolpyruvylshikimate-3-phosphate synthase., Healy-Fried ML, Funke T, Priestman MA, Han H, Schonbrunn E, J Biol Chem. 2007 Nov 9;282(45):32949-55. Epub 2007 Sep 12. PMID:[http://www.ncbi.nlm.nih.gov/pubmed/17855366 17855366]
+
*[[EPSP synthase 3D structures|EPSP synthase 3D structures]]
-
[[Category: 3-phosphoshikimate 1-carboxyvinyltransferase]]
+
== References ==
-
[[Category: Escherichia coli]]
+
<references/>
-
[[Category: Single protein]]
+
__TOC__
-
[[Category: Healy-Fried, M L.]]
+
</StructureSection>
-
[[Category: Schonbrunn, E.]]
+
[[Category: Escherichia coli K-12]]
-
[[Category: Inside-out alpha-beta barrel]]
+
[[Category: Large Structures]]
-
[[Category: Transferase]]
+
[[Category: Healy-Fried ML]]
-
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Sun May 4 14:52:52 2008''
+
[[Category: Schonbrunn E]]

Current revision

E.coli EPSP synthase Pro101Ser liganded with S3P

PDB ID 2qfs

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools