|
|
(15 intermediate revisions not shown.) |
Line 1: |
Line 1: |
- | {{Seed}} | |
- | [[Image:1e0f.png|left|200px]] | |
| | | |
- | <!--
| + | ==Crystal structure of the human alpha-thrombin-haemadin complex: an exosite II-binding inhibitor== |
- | The line below this paragraph, containing "STRUCTURE_1e0f", creates the "Structure Box" on the page.
| + | <StructureSection load='1e0f' size='340' side='right'caption='[[1e0f]], [[Resolution|resolution]] 3.10Å' scene=''> |
- | You may change the PDB parameter (which sets the PDB file loaded into the applet)
| + | == Structural highlights == |
- | or the SCENE parameter (which sets the initial scene displayed when the page is loaded), | + | <table><tr><td colspan='2'>[[1e0f]] is a 9 chain structure with sequence from [https://en.wikipedia.org/wiki/Haemadipsa_sylvestris Haemadipsa sylvestris] and [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1E0F OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1E0F FirstGlance]. <br> |
- | or leave the SCENE parameter empty for the default display.
| + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 3.1Å</td></tr> |
- | -->
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1e0f FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1e0f OCA], [https://pdbe.org/1e0f PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1e0f RCSB], [https://www.ebi.ac.uk/pdbsum/1e0f PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1e0f ProSAT]</span></td></tr> |
- | {{STRUCTURE_1e0f| PDB=1e0f | SCENE= }}
| + | </table> |
| + | == Disease == |
| + | [https://www.uniprot.org/uniprot/THRB_HUMAN THRB_HUMAN] Defects in F2 are the cause of factor II deficiency (FA2D) [MIM:[https://omim.org/entry/613679 613679]. It is a very rare blood coagulation disorder characterized by mucocutaneous bleeding symptoms. The severity of the bleeding manifestations correlates with blood factor II levels.<ref>PMID:14962227</ref> <ref>PMID:6405779</ref> <ref>PMID:3771562</ref> <ref>PMID:3567158</ref> <ref>PMID:3801671</ref> <ref>PMID:3242619</ref> <ref>PMID:2719946</ref> <ref>PMID:1354985</ref> <ref>PMID:1421398</ref> <ref>PMID:1349838</ref> <ref>PMID:7865694</ref> <ref>PMID:7792730</ref> Genetic variations in F2 may be a cause of susceptibility to ischemic stroke (ISCHSTR) [MIM:[https://omim.org/entry/601367 601367]; also known as cerebrovascular accident or cerebral infarction. A stroke is an acute neurologic event leading to death of neural tissue of the brain and resulting in loss of motor, sensory and/or cognitive function. Ischemic strokes, resulting from vascular occlusion, is considered to be a highly complex disease consisting of a group of heterogeneous disorders with multiple genetic and environmental risk factors.<ref>PMID:15534175</ref> Defects in F2 are the cause of thrombophilia due to thrombin defect (THPH1) [MIM:[https://omim.org/entry/188050 188050]. It is a multifactorial disorder of hemostasis characterized by abnormal platelet aggregation in response to various agents and recurrent thrombi formation. Note=A common genetic variation in the 3-prime untranslated region of the prothrombin gene is associated with elevated plasma prothrombin levels and an increased risk of venous thrombosis. Defects in F2 are associated with susceptibility to pregnancy loss, recurrent, type 2 (RPRGL2) [MIM:[https://omim.org/entry/614390 614390]. A common complication of pregnancy, resulting in spontaneous abortion before the fetus has reached viability. The term includes all miscarriages from the time of conception until 24 weeks of gestation. Recurrent pregnancy loss is defined as 3 or more consecutive spontaneous abortions.<ref>PMID:11506076</ref> |
| + | == Function == |
| + | [https://www.uniprot.org/uniprot/THRB_HUMAN THRB_HUMAN] Thrombin, which cleaves bonds after Arg and Lys, converts fibrinogen to fibrin and activates factors V, VII, VIII, XIII, and, in complex with thrombomodulin, protein C. Functions in blood homeostasis, inflammation and wound healing.<ref>PMID:2856554</ref> |
| + | == Evolutionary Conservation == |
| + | [[Image:Consurf_key_small.gif|200px|right]] |
| + | Check<jmol> |
| + | <jmolCheckbox> |
| + | <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/e0/1e0f_consurf.spt"</scriptWhenChecked> |
| + | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked> |
| + | <text>to colour the structure by Evolutionary Conservation</text> |
| + | </jmolCheckbox> |
| + | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1e0f ConSurf]. |
| + | <div style="clear:both"></div> |
| + | <div style="background-color:#fffaf0;"> |
| + | == Publication Abstract from PubMed == |
| + | The serine proteinase alpha-thrombin plays a pivotal role in the regulation of blood fluidity, and therefore constitutes a primary target in the treatment of various haemostatic disorders. Haemadin is a slow tight- binding thrombin inhibitor from the land-living leech Haemadipsa sylvestris. Here we present the 3.1 A crystal structure of the human alpha-thrombin- haemadin complex. The N-terminal segment of haemadin binds to the active site of thrombin, forming a parallel beta-strand with residues Ser214-Gly216 of the proteinase. This mode of binding is similar to that observed in another leech-derived inhibitor, hirudin. In contrast to hirudin, however, the markedly acidic C-terminal peptide of haemadin does not bind the fibrinogen-recognition exosite, but interacts with the heparin-binding exosite of thrombin. Thus, haemadin binds to thrombin according to a novel mechanism, despite an overall structural similarity with hirudin. Haemadin inhibits both free and thrombomodulin-bound alpha-thrombin, but not intermediate activation forms such as meizothrombin. This specific anticoagulant ability of haemadin makes it an ideal candidate for an antithrombotic agent, as well as a starting point for the design of novel antithrombotics. |
| | | |
- | ===CRYSTAL STRUCTURE OF THE HUMAN ALPHA-THROMBIN-HAEMADIN COMPLEX: AN EXOSITE II-BINDING INHIBITOR===
| + | Crystal structure of the human alpha-thrombin-haemadin complex: an exosite II-binding inhibitor.,Richardson JL, Kroger B, Hoeffken W, Sadler JE, Pereira P, Huber R, Bode W, Fuentes-Prior P EMBO J. 2000 Nov 1;19(21):5650-60. PMID:11060016<ref>PMID:11060016</ref> |
| | | |
| + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> |
| + | </div> |
| + | <div class="pdbe-citations 1e0f" style="background-color:#fffaf0;"></div> |
| | | |
- | <!--
| + | ==See Also== |
- | The line below this paragraph, {{ABSTRACT_PUBMED_11060016}}, adds the Publication Abstract to the page
| + | *[[Thrombin 3D Structures|Thrombin 3D Structures]] |
- | (as it appears on PubMed at http://www.pubmed.gov), where 11060016 is the PubMed ID number.
| + | == References == |
- | -->
| + | <references/> |
- | {{ABSTRACT_PUBMED_11060016}}
| + | __TOC__ |
- | | + | </StructureSection> |
- | ==About this Structure== | + | |
- | 1E0F is a [[Protein complex]] structure of sequences from [http://en.wikipedia.org/wiki/Haemadipsa_sylvestris Haemadipsa sylvestris] and [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1E0F OCA].
| + | |
- | | + | |
- | ==Reference== | + | |
- | Crystal structure of the human alpha-thrombin-haemadin complex: an exosite II-binding inhibitor., Richardson JL, Kroger B, Hoeffken W, Sadler JE, Pereira P, Huber R, Bode W, Fuentes-Prior P, EMBO J. 2000 Nov 1;19(21):5650-60. PMID:[http://www.ncbi.nlm.nih.gov/pubmed/11060016 11060016]
| + | |
| [[Category: Haemadipsa sylvestris]] | | [[Category: Haemadipsa sylvestris]] |
| [[Category: Homo sapiens]] | | [[Category: Homo sapiens]] |
- | [[Category: Protein complex]] | + | [[Category: Large Structures]] |
- | [[Category: Thrombin]]
| + | [[Category: Bode W]] |
- | [[Category: Bode, W.]] | + | [[Category: Fuentes-Prior P]] |
- | [[Category: Fuentes-Prior, P.]] | + | [[Category: Hoefken W]] |
- | [[Category: Hoefken, W.]] | + | [[Category: Huber R]] |
- | [[Category: Huber, R.]] | + | [[Category: Kroeger B]] |
- | [[Category: Kroeger, B.]] | + | [[Category: Pereira P]] |
- | [[Category: Pereira, P.]] | + | [[Category: Richardson JL]] |
- | [[Category: Richardson, J.]] | + | |
- | [[Category: Coagulation/crystal structure/heparin-binding site/ hirudin/thrombin inhibitor]]
| + | |
- | | + | |
- | ''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Mon Jun 30 23:56:03 2008''
| + | |
| Structural highlights
Disease
THRB_HUMAN Defects in F2 are the cause of factor II deficiency (FA2D) [MIM:613679. It is a very rare blood coagulation disorder characterized by mucocutaneous bleeding symptoms. The severity of the bleeding manifestations correlates with blood factor II levels.[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] Genetic variations in F2 may be a cause of susceptibility to ischemic stroke (ISCHSTR) [MIM:601367; also known as cerebrovascular accident or cerebral infarction. A stroke is an acute neurologic event leading to death of neural tissue of the brain and resulting in loss of motor, sensory and/or cognitive function. Ischemic strokes, resulting from vascular occlusion, is considered to be a highly complex disease consisting of a group of heterogeneous disorders with multiple genetic and environmental risk factors.[13] Defects in F2 are the cause of thrombophilia due to thrombin defect (THPH1) [MIM:188050. It is a multifactorial disorder of hemostasis characterized by abnormal platelet aggregation in response to various agents and recurrent thrombi formation. Note=A common genetic variation in the 3-prime untranslated region of the prothrombin gene is associated with elevated plasma prothrombin levels and an increased risk of venous thrombosis. Defects in F2 are associated with susceptibility to pregnancy loss, recurrent, type 2 (RPRGL2) [MIM:614390. A common complication of pregnancy, resulting in spontaneous abortion before the fetus has reached viability. The term includes all miscarriages from the time of conception until 24 weeks of gestation. Recurrent pregnancy loss is defined as 3 or more consecutive spontaneous abortions.[14]
Function
THRB_HUMAN Thrombin, which cleaves bonds after Arg and Lys, converts fibrinogen to fibrin and activates factors V, VII, VIII, XIII, and, in complex with thrombomodulin, protein C. Functions in blood homeostasis, inflammation and wound healing.[15]
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
The serine proteinase alpha-thrombin plays a pivotal role in the regulation of blood fluidity, and therefore constitutes a primary target in the treatment of various haemostatic disorders. Haemadin is a slow tight- binding thrombin inhibitor from the land-living leech Haemadipsa sylvestris. Here we present the 3.1 A crystal structure of the human alpha-thrombin- haemadin complex. The N-terminal segment of haemadin binds to the active site of thrombin, forming a parallel beta-strand with residues Ser214-Gly216 of the proteinase. This mode of binding is similar to that observed in another leech-derived inhibitor, hirudin. In contrast to hirudin, however, the markedly acidic C-terminal peptide of haemadin does not bind the fibrinogen-recognition exosite, but interacts with the heparin-binding exosite of thrombin. Thus, haemadin binds to thrombin according to a novel mechanism, despite an overall structural similarity with hirudin. Haemadin inhibits both free and thrombomodulin-bound alpha-thrombin, but not intermediate activation forms such as meizothrombin. This specific anticoagulant ability of haemadin makes it an ideal candidate for an antithrombotic agent, as well as a starting point for the design of novel antithrombotics.
Crystal structure of the human alpha-thrombin-haemadin complex: an exosite II-binding inhibitor.,Richardson JL, Kroger B, Hoeffken W, Sadler JE, Pereira P, Huber R, Bode W, Fuentes-Prior P EMBO J. 2000 Nov 1;19(21):5650-60. PMID:11060016[16]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Wang W, Fu Q, Zhou R, Wu W, Ding Q, Hu Y, Wang X, Wang H, Wang Z. Prothrombin Shanghai: hypoprothrombinaemia caused by substitution of Gla29 by Gly. Haemophilia. 2004 Jan;10(1):94-7. PMID:14962227
- ↑ Board PG, Shaw DC. Determination of the amino acid substitution in human prothrombin type 3 (157 Glu leads to Lys) and the localization of a third thrombin cleavage site. Br J Haematol. 1983 Jun;54(2):245-54. PMID:6405779
- ↑ Rabiet MJ, Furie BC, Furie B. Molecular defect of prothrombin Barcelona. Substitution of cysteine for arginine at residue 273. J Biol Chem. 1986 Nov 15;261(32):15045-8. PMID:3771562
- ↑ Miyata T, Morita T, Inomoto T, Kawauchi S, Shirakami A, Iwanaga S. Prothrombin Tokushima, a replacement of arginine-418 by tryptophan that impairs the fibrinogen clotting activity of derived thrombin Tokushima. Biochemistry. 1987 Feb 24;26(4):1117-22. PMID:3567158
- ↑ Inomoto T, Shirakami A, Kawauchi S, Shigekiyo T, Saito S, Miyoshi K, Morita T, Iwanaga S. Prothrombin Tokushima: characterization of dysfunctional thrombin derived from a variant of human prothrombin. Blood. 1987 Feb;69(2):565-9. PMID:3801671
- ↑ Henriksen RA, Mann KG. Identification of the primary structural defect in the dysthrombin thrombin Quick I: substitution of cysteine for arginine-382. Biochemistry. 1988 Dec 27;27(26):9160-5. PMID:3242619
- ↑ Henriksen RA, Mann KG. Substitution of valine for glycine-558 in the congenital dysthrombin thrombin Quick II alters primary substrate specificity. Biochemistry. 1989 Mar 7;28(5):2078-82. PMID:2719946
- ↑ Miyata T, Aruga R, Umeyama H, Bezeaud A, Guillin MC, Iwanaga S. Prothrombin Salakta: substitution of glutamic acid-466 by alanine reduces the fibrinogen clotting activity and the esterase activity. Biochemistry. 1992 Aug 25;31(33):7457-62. PMID:1354985
- ↑ Morishita E, Saito M, Kumabashiri I, Asakura H, Matsuda T, Yamaguchi K. Prothrombin Himi: a compound heterozygote for two dysfunctional prothrombin molecules (Met-337-->Thr and Arg-388-->His). Blood. 1992 Nov 1;80(9):2275-80. PMID:1421398
- ↑ Iwahana H, Yoshimoto K, Shigekiyo T, Shirakami A, Saito S, Itakura M. Detection of a single base substitution of the gene for prothrombin Tokushima. The application of PCR-SSCP for the genetic and molecular analysis of dysprothrombinemia. Int J Hematol. 1992 Feb;55(1):93-100. PMID:1349838
- ↑ James HL, Kim DJ, Zheng DQ, Girolami A. Prothrombin Padua I: incomplete activation due to an amino acid substitution at a factor Xa cleavage site. Blood Coagul Fibrinolysis. 1994 Oct;5(5):841-4. PMID:7865694
- ↑ Degen SJ, McDowell SA, Sparks LM, Scharrer I. Prothrombin Frankfurt: a dysfunctional prothrombin characterized by substitution of Glu-466 by Ala. Thromb Haemost. 1995 Feb;73(2):203-9. PMID:7792730
- ↑ Casas JP, Hingorani AD, Bautista LE, Sharma P. Meta-analysis of genetic studies in ischemic stroke: thirty-two genes involving approximately 18,000 cases and 58,000 controls. Arch Neurol. 2004 Nov;61(11):1652-61. PMID:15534175 doi:61/11/1652
- ↑ Pihusch R, Buchholz T, Lohse P, Rubsamen H, Rogenhofer N, Hasbargen U, Hiller E, Thaler CJ. Thrombophilic gene mutations and recurrent spontaneous abortion: prothrombin mutation increases the risk in the first trimester. Am J Reprod Immunol. 2001 Aug;46(2):124-31. PMID:11506076
- ↑ Glenn KC, Frost GH, Bergmann JS, Carney DH. Synthetic peptides bind to high-affinity thrombin receptors and modulate thrombin mitogenesis. Pept Res. 1988 Nov-Dec;1(2):65-73. PMID:2856554
- ↑ Richardson JL, Kroger B, Hoeffken W, Sadler JE, Pereira P, Huber R, Bode W, Fuentes-Prior P. Crystal structure of the human alpha-thrombin-haemadin complex: an exosite II-binding inhibitor. EMBO J. 2000 Nov 1;19(21):5650-60. PMID:11060016 doi:10.1093/emboj/19.21.5650
|