|
|
| (9 intermediate revisions not shown.) |
| Line 1: |
Line 1: |
| - | {{Seed}} | |
| - | [[Image:3cjo.png|left|200px]] | |
| | | | |
| - | <!-- | + | ==Crystal structure of KSP in complex with inhibitor 30== |
| - | The line below this paragraph, containing "STRUCTURE_3cjo", creates the "Structure Box" on the page.
| + | <StructureSection load='3cjo' size='340' side='right'caption='[[3cjo]], [[Resolution|resolution]] 2.28Å' scene=''> |
| - | You may change the PDB parameter (which sets the PDB file loaded into the applet) | + | == Structural highlights == |
| - | or the SCENE parameter (which sets the initial scene displayed when the page is loaded),
| + | <table><tr><td colspan='2'>[[3cjo]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3CJO OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3CJO FirstGlance]. <br> |
| - | or leave the SCENE parameter empty for the default display.
| + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.28Å</td></tr> |
| - | --> | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ADP:ADENOSINE-5-DIPHOSPHATE'>ADP</scene>, <scene name='pdbligand=K30:(2S)-4-(2,5-DIFLUOROPHENYL)-N-[(3R,4S)-3-FLUORO-1-METHYLPIPERIDIN-4-YL]-2-(HYDROXYMETHYL)-N-METHYL-2-PHENYL-2,5-DIHYDRO-1H-PYRROLE-1-CARBOXAMIDE'>K30</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr> |
| - | {{STRUCTURE_3cjo| PDB=3cjo | SCENE= }}
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3cjo FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3cjo OCA], [https://pdbe.org/3cjo PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3cjo RCSB], [https://www.ebi.ac.uk/pdbsum/3cjo PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3cjo ProSAT]</span></td></tr> |
| | + | </table> |
| | + | == Disease == |
| | + | [https://www.uniprot.org/uniprot/KIF11_HUMAN KIF11_HUMAN] Defects in KIF11 are the cause of microcephaly with or without chorioretinopathy, lymphedema, or mental retardation (MCLMR) [MIM:[https://omim.org/entry/152950 152950]. An autosomal dominant disorder that involves an overlapping but variable spectrum of central nervous system and ocular developmental anomalies. Microcephaly ranges from mild to severe and is often associated with mild to moderate developmental delay and a characteristic facial phenotype with upslanting palpebral fissures, broad nose with rounded tip, long philtrum with thin upper lip, prominent chin, and prominent ears. Chorioretinopathy is the most common eye abnormality, but retinal folds, microphthalmia, and myopic and hypermetropic astigmatism have also been reported, and some individuals have no overt ocular phenotype. Congenital lymphedema, when present, is typically confined to the dorsa of the feet, and lymphoscintigraphy reveals the absence of radioactive isotope uptake from the webspaces between the toes.<ref>PMID:22284827</ref> |
| | + | == Function == |
| | + | [https://www.uniprot.org/uniprot/KIF11_HUMAN KIF11_HUMAN] Motor protein required for establishing a bipolar spindle. Blocking of KIF11 prevents centrosome migration and arrest cells in mitosis with monoastral microtubule arrays.<ref>PMID:19001501</ref> |
| | + | == Evolutionary Conservation == |
| | + | [[Image:Consurf_key_small.gif|200px|right]] |
| | + | Check<jmol> |
| | + | <jmolCheckbox> |
| | + | <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/cj/3cjo_consurf.spt"</scriptWhenChecked> |
| | + | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> |
| | + | <text>to colour the structure by Evolutionary Conservation</text> |
| | + | </jmolCheckbox> |
| | + | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=3cjo ConSurf]. |
| | + | <div style="clear:both"></div> |
| | + | <div style="background-color:#fffaf0;"> |
| | + | == Publication Abstract from PubMed == |
| | + | Inhibition of kinesin spindle protein (KSP) is a novel mechanism for treatment of cancer with the potential to overcome limitations associated with currently employed cytotoxic agents. Herein, we describe a C2-hydroxymethyl dihydropyrrole KSP inhibitor ( 11) that circumvents hERG channel binding and poor in vivo potency, issues that limited earlier compounds from our program. However, introduction of the C2-hydroxymethyl group caused 11 to be a substrate for cellular efflux by P-glycoprotein (Pgp). Utilizing knowledge garnered from previous KSP inhibitors, we found that beta-fluorination modulated the p K a of the piperidine nitrogen and reduced Pgp efflux, but the resulting compound ( 14) generated a toxic metabolite in vivo. Incorporation of fluorine in a strategic, metabolically benign position by synthesis of an N-methyl-3-fluoro-4-(aminomethyl)piperidine urea led to compound 30 that has an optimal in vitro and metabolic profile. Compound 30 (MK-0731) was recently studied in a phase I clinical trial in patients with taxane-refractory solid tumors. |
| | | | |
| - | ===Crystal structure of KSP in complex with inhibitor 30===
| + | Kinesin Spindle Protein (KSP) Inhibitors. 9. Discovery of (2S)-4-(2,5-Difluorophenyl)-N-[(3R,4S)-3-fluoro-1-methylpiperidin-4-yl]-2- (hydroxymethyl)-N-methyl-2-phenyl-2,5-dihydro-1H-pyrrole-1-carboxamide (MK-0731) for the Treatment of Taxane-Refractory Cancer.,Cox CD, Coleman PJ, Breslin MJ, Whitman DB, Garbaccio RM, Fraley ME, Buser CA, Walsh ES, Hamilton K, Schaber MD, Lobell RB, Tao W, Davide JP, Diehl RE, Abrams MT, South VJ, Huber HE, Torrent M, Prueksaritanont T, Li C, Slaughter DE, Mahan E, Fernandez-Metzler C, Yan Y, Kuo LC, Kohl NE, Hartman GD J Med Chem. 2008 Jun 25;. PMID:18578472<ref>PMID:18578472</ref> |
| | | | |
| | + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> |
| | + | </div> |
| | + | <div class="pdbe-citations 3cjo" style="background-color:#fffaf0;"></div> |
| | | | |
| - | <!--
| + | ==See Also== |
| - | The line below this paragraph, {{ABSTRACT_PUBMED_18578472}}, adds the Publication Abstract to the page
| + | *[[Kinesin 3D Structures|Kinesin 3D Structures]] |
| - | (as it appears on PubMed at http://www.pubmed.gov), where 18578472 is the PubMed ID number.
| + | == References == |
| - | -->
| + | <references/> |
| - | {{ABSTRACT_PUBMED_18578472}}
| + | __TOC__ |
| - | | + | </StructureSection> |
| - | ==About this Structure== | + | |
| - | 3CJO is a [[Single protein]] structure of sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3CJO OCA].
| + | |
| - | | + | |
| - | ==Reference== | + | |
| - | Kinesin Spindle Protein (KSP) Inhibitors. 9. Discovery of (2S)-4-(2,5-Difluorophenyl)-N-[(3R,4S)-3-fluoro-1-methylpiperidin-4-yl]-2- (hydroxymethyl)-N-methyl-2-phenyl-2,5-dihydro-1H-pyrrole-1-carboxamide (MK-0731) for the Treatment of Taxane-Refractory Cancer., Cox CD, Coleman PJ, Breslin MJ, Whitman DB, Garbaccio RM, Fraley ME, Buser CA, Walsh ES, Hamilton K, Schaber MD, Lobell RB, Tao W, Davide JP, Diehl RE, Abrams MT, South VJ, Huber HE, Torrent M, Prueksaritanont T, Li C, Slaughter DE, Mahan E, Fernandez-Metzler C, Yan Y, Kuo LC, Kohl NE, Hartman GD, J Med Chem. 2008 Jun 25;. PMID:[http://www.ncbi.nlm.nih.gov/pubmed/18578472 18578472]
| + | |
| | [[Category: Homo sapiens]] | | [[Category: Homo sapiens]] |
| - | [[Category: Single protein]] | + | [[Category: Large Structures]] |
| - | [[Category: Yan, Y.]] | + | [[Category: Yan Y]] |
| - | [[Category: Atp-binding]]
| + | |
| - | [[Category: Cell cycle]]
| + | |
| - | [[Category: Cell division]]
| + | |
| - | [[Category: Coiled coil]]
| + | |
| - | [[Category: Ksp]]
| + | |
| - | [[Category: Ksp-inhibitor complex]]
| + | |
| - | [[Category: Microtubule]]
| + | |
| - | [[Category: Mitosis]]
| + | |
| - | [[Category: Motor protein]]
| + | |
| - | [[Category: Nucleotide-binding]]
| + | |
| - | [[Category: Phosphoprotein]]
| + | |
| - | | + | |
| - | ''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Wed Jul 9 10:10:45 2008''
| + | |
| Structural highlights
Disease
KIF11_HUMAN Defects in KIF11 are the cause of microcephaly with or without chorioretinopathy, lymphedema, or mental retardation (MCLMR) [MIM:152950. An autosomal dominant disorder that involves an overlapping but variable spectrum of central nervous system and ocular developmental anomalies. Microcephaly ranges from mild to severe and is often associated with mild to moderate developmental delay and a characteristic facial phenotype with upslanting palpebral fissures, broad nose with rounded tip, long philtrum with thin upper lip, prominent chin, and prominent ears. Chorioretinopathy is the most common eye abnormality, but retinal folds, microphthalmia, and myopic and hypermetropic astigmatism have also been reported, and some individuals have no overt ocular phenotype. Congenital lymphedema, when present, is typically confined to the dorsa of the feet, and lymphoscintigraphy reveals the absence of radioactive isotope uptake from the webspaces between the toes.[1]
Function
KIF11_HUMAN Motor protein required for establishing a bipolar spindle. Blocking of KIF11 prevents centrosome migration and arrest cells in mitosis with monoastral microtubule arrays.[2]
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
Inhibition of kinesin spindle protein (KSP) is a novel mechanism for treatment of cancer with the potential to overcome limitations associated with currently employed cytotoxic agents. Herein, we describe a C2-hydroxymethyl dihydropyrrole KSP inhibitor ( 11) that circumvents hERG channel binding and poor in vivo potency, issues that limited earlier compounds from our program. However, introduction of the C2-hydroxymethyl group caused 11 to be a substrate for cellular efflux by P-glycoprotein (Pgp). Utilizing knowledge garnered from previous KSP inhibitors, we found that beta-fluorination modulated the p K a of the piperidine nitrogen and reduced Pgp efflux, but the resulting compound ( 14) generated a toxic metabolite in vivo. Incorporation of fluorine in a strategic, metabolically benign position by synthesis of an N-methyl-3-fluoro-4-(aminomethyl)piperidine urea led to compound 30 that has an optimal in vitro and metabolic profile. Compound 30 (MK-0731) was recently studied in a phase I clinical trial in patients with taxane-refractory solid tumors.
Kinesin Spindle Protein (KSP) Inhibitors. 9. Discovery of (2S)-4-(2,5-Difluorophenyl)-N-[(3R,4S)-3-fluoro-1-methylpiperidin-4-yl]-2- (hydroxymethyl)-N-methyl-2-phenyl-2,5-dihydro-1H-pyrrole-1-carboxamide (MK-0731) for the Treatment of Taxane-Refractory Cancer.,Cox CD, Coleman PJ, Breslin MJ, Whitman DB, Garbaccio RM, Fraley ME, Buser CA, Walsh ES, Hamilton K, Schaber MD, Lobell RB, Tao W, Davide JP, Diehl RE, Abrams MT, South VJ, Huber HE, Torrent M, Prueksaritanont T, Li C, Slaughter DE, Mahan E, Fernandez-Metzler C, Yan Y, Kuo LC, Kohl NE, Hartman GD J Med Chem. 2008 Jun 25;. PMID:18578472[3]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Ostergaard P, Simpson MA, Mendola A, Vasudevan P, Connell FC, van Impel A, Moore AT, Loeys BL, Ghalamkarpour A, Onoufriadis A, Martinez-Corral I, Devery S, Leroy JG, van Laer L, Singer A, Bialer MG, McEntagart M, Quarrell O, Brice G, Trembath RC, Schulte-Merker S, Makinen T, Vikkula M, Mortimer PS, Mansour S, Jeffery S. Mutations in KIF11 cause autosomal-dominant microcephaly variably associated with congenital lymphedema and chorioretinopathy. Am J Hum Genet. 2012 Feb 10;90(2):356-62. doi: 10.1016/j.ajhg.2011.12.018. Epub, 2012 Jan 26. PMID:22284827 doi:10.1016/j.ajhg.2011.12.018
- ↑ Rapley J, Nicolas M, Groen A, Regue L, Bertran MT, Caelles C, Avruch J, Roig J. The NIMA-family kinase Nek6 phosphorylates the kinesin Eg5 at a novel site necessary for mitotic spindle formation. J Cell Sci. 2008 Dec 1;121(Pt 23):3912-21. doi: 10.1242/jcs.035360. Epub 2008 Nov, 11. PMID:19001501 doi:10.1242/jcs.035360
- ↑ Cox CD, Coleman PJ, Breslin MJ, Whitman DB, Garbaccio RM, Fraley ME, Buser CA, Walsh ES, Hamilton K, Schaber MD, Lobell RB, Tao W, Davide JP, Diehl RE, Abrams MT, South VJ, Huber HE, Torrent M, Prueksaritanont T, Li C, Slaughter DE, Mahan E, Fernandez-Metzler C, Yan Y, Kuo LC, Kohl NE, Hartman GD. Kinesin Spindle Protein (KSP) Inhibitors. 9. Discovery of (2S)-4-(2,5-Difluorophenyl)-N-[(3R,4S)-3-fluoro-1-methylpiperidin-4-yl]-2- (hydroxymethyl)-N-methyl-2-phenyl-2,5-dihydro-1H-pyrrole-1-carboxamide (MK-0731) for the Treatment of Taxane-Refractory Cancer. J Med Chem. 2008 Jun 25;. PMID:18578472 doi:10.1021/jm800386y
|