|
|
| (12 intermediate revisions not shown.) |
| Line 1: |
Line 1: |
| - | {{Seed}} | |
| - | [[Image:2com.png|left|200px]] | |
| | | | |
| - | <!-- | + | ==The solution structure of the SWIRM domain of human LSD1== |
| - | The line below this paragraph, containing "STRUCTURE_2com", creates the "Structure Box" on the page.
| + | <StructureSection load='2com' size='340' side='right'caption='[[2com]]' scene=''> |
| - | You may change the PDB parameter (which sets the PDB file loaded into the applet)
| + | == Structural highlights == |
| - | or the SCENE parameter (which sets the initial scene displayed when the page is loaded),
| + | <table><tr><td colspan='2'>[[2com]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2COM OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2COM FirstGlance]. <br> |
| - | or leave the SCENE parameter empty for the default display.
| + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Solution NMR</td></tr> |
| - | --> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2com FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2com OCA], [https://pdbe.org/2com PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2com RCSB], [https://www.ebi.ac.uk/pdbsum/2com PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2com ProSAT], [https://www.topsan.org/Proteins/RSGI/2com TOPSAN]</span></td></tr> |
| - | {{STRUCTURE_2com| PDB=2com | SCENE= }}
| + | </table> |
| | + | == Function == |
| | + | [https://www.uniprot.org/uniprot/KDM1A_HUMAN KDM1A_HUMAN] Histone demethylase that demethylates both 'Lys-4' (H3K4me) and 'Lys-9' (H3K9me) of histone H3, thereby acting as a coactivator or a corepressor, depending on the context. Acts by oxidizing the substrate by FAD to generate the corresponding imine that is subsequently hydrolyzed. Acts as a corepressor by mediating demethylation of H3K4me, a specific tag for epigenetic transcriptional activation. Demethylates both mono- (H3K4me1) and di-methylated (H3K4me2) H3K4me. May play a role in the repression of neuronal genes. Alone, it is unable to demethylate H3K4me on nucleosomes and requires the presence of RCOR1/CoREST to achieve such activity. Also acts as a coactivator of androgen receptor (ANDR)-dependent transcription, by being recruited to ANDR target genes and mediating demethylation of H3K9me, a specific tag for epigenetic transcriptional repression. The presence of PRKCB in ANDR-containing complexes, which mediates phosphorylation of 'Thr-6' of histone H3 (H3T6ph), a specific tag that prevents demethylation H3K4me, prevents H3K4me demethylase activity of KDM1A. Demethylates di-methylated 'Lys-370' of p53/TP53 which prevents interaction of p53/TP53 with TP53BP1 and represses p53/TP53-mediated transcriptional activation. Demethylates and stabilizes the DNA methylase DNMT1. Required for gastrulation during embryogenesis. Component of a RCOR/GFI/KDM1A/HDAC complex that suppresses, via histone deacetylase (HDAC) recruitment, a number of genes implicated in multilineage blood cell development.<ref>PMID:12032298</ref> <ref>PMID:15620353</ref> <ref>PMID:16079795</ref> <ref>PMID:17805299</ref> <ref>PMID:20228790</ref> |
| | + | == Evolutionary Conservation == |
| | + | [[Image:Consurf_key_small.gif|200px|right]] |
| | + | Check<jmol> |
| | + | <jmolCheckbox> |
| | + | <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/co/2com_consurf.spt"</scriptWhenChecked> |
| | + | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> |
| | + | <text>to colour the structure by Evolutionary Conservation</text> |
| | + | </jmolCheckbox> |
| | + | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=2com ConSurf]. |
| | + | <div style="clear:both"></div> |
| | + | <div style="background-color:#fffaf0;"> |
| | + | == Publication Abstract from PubMed == |
| | + | SWIRM is an evolutionarily conserved domain involved in several chromatin-modifying complexes. Recently, the LSD1 protein, which bears a SWIRM domain, was found to be a demethylase for Lys4-methylated histone H3. Here, we report a solution structure of the SWIRM domain of human LSD1. It forms a compact fold composed of 6 alpha helices, in which a 20 amino acid long helix (alpha4) is surrounded by 5 other short helices. The SWIRM domain structure could be divided into the N-terminal part (alpha1-alpha3) and the C-terminal part (alpha4-alpha6), which are connected to each other by a salt bridge. While the N-terminal part forms a SWIRM-specific structure, the C-terminal part adopts a helix-turn-helix (HTH)-related fold. We discuss a model in which the SWIRM domain acts as an anchor site for a histone tail. |
| | | | |
| - | ===The solution structure of the SWIRM domain of human LSD1===
| + | Solution structure of the SWIRM domain of human histone demethylase LSD1.,Tochio N, Umehara T, Koshiba S, Inoue M, Yabuki T, Aoki M, Seki E, Watanabe S, Tomo Y, Hanada M, Ikari M, Sato M, Terada T, Nagase T, Ohara O, Shirouzu M, Tanaka A, Kigawa T, Yokoyama S Structure. 2006 Mar;14(3):457-68. PMID:16531230<ref>PMID:16531230</ref> |
| | | | |
| | + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> |
| | + | </div> |
| | + | <div class="pdbe-citations 2com" style="background-color:#fffaf0;"></div> |
| | | | |
| - | <!--
| + | ==See Also== |
| - | The line below this paragraph, {{ABSTRACT_PUBMED_16531230}}, adds the Publication Abstract to the page
| + | *[[Lysine-specific histone demethylase 3D structures|Lysine-specific histone demethylase 3D structures]] |
| - | (as it appears on PubMed at http://www.pubmed.gov), where 16531230 is the PubMed ID number.
| + | == References == |
| - | -->
| + | <references/> |
| - | {{ABSTRACT_PUBMED_16531230}}
| + | __TOC__ |
| - | | + | </StructureSection> |
| - | ==About this Structure== | + | |
| - | 2COM is a [[Single protein]] structure of sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2COM OCA].
| + | |
| - | | + | |
| - | ==Reference== | + | |
| - | Solution structure of the SWIRM domain of human histone demethylase LSD1., Tochio N, Umehara T, Koshiba S, Inoue M, Yabuki T, Aoki M, Seki E, Watanabe S, Tomo Y, Hanada M, Ikari M, Sato M, Terada T, Nagase T, Ohara O, Shirouzu M, Tanaka A, Kigawa T, Yokoyama S, Structure. 2006 Mar;14(3):457-68. PMID:[http://www.ncbi.nlm.nih.gov/pubmed/16531230 16531230]
| + | |
| | [[Category: Homo sapiens]] | | [[Category: Homo sapiens]] |
| - | [[Category: Single protein]] | + | [[Category: Large Structures]] |
| - | [[Category: Inoue, M.]] | + | [[Category: Inoue M]] |
| - | [[Category: Kigawa, T.]] | + | [[Category: Kigawa T]] |
| - | [[Category: Koshiba, S.]] | + | [[Category: Koshiba S]] |
| - | [[Category: RSGI, RIKEN Structural Genomics/Proteomics Initiative.]]
| + | [[Category: Tanaka A]] |
| - | [[Category: Tanaka, A.]] | + | [[Category: Tochio N]] |
| - | [[Category: Tochio, N.]] | + | [[Category: Umehara T]] |
| - | [[Category: Umehara, T.]] | + | [[Category: Yokoyama S]] |
| - | [[Category: Yokoyama, S.]] | + | |
| - | [[Category: Aof2]]
| + | |
| - | [[Category: Histone modulation]]
| + | |
| - | [[Category: Kiaa0601]]
| + | |
| - | [[Category: Lsd1]]
| + | |
| - | [[Category: National project on protein structural and functional analyse]]
| + | |
| - | [[Category: Nppsfa]]
| + | |
| - | [[Category: Riken structural genomics/proteomics initiative]]
| + | |
| - | [[Category: Rsgi]]
| + | |
| - | [[Category: Structural genomic]]
| + | |
| - | [[Category: Swirm domain]]
| + | |
| - | | + | |
| - | ''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Mon Jul 28 17:01:55 2008''
| + | |
| Structural highlights
Function
KDM1A_HUMAN Histone demethylase that demethylates both 'Lys-4' (H3K4me) and 'Lys-9' (H3K9me) of histone H3, thereby acting as a coactivator or a corepressor, depending on the context. Acts by oxidizing the substrate by FAD to generate the corresponding imine that is subsequently hydrolyzed. Acts as a corepressor by mediating demethylation of H3K4me, a specific tag for epigenetic transcriptional activation. Demethylates both mono- (H3K4me1) and di-methylated (H3K4me2) H3K4me. May play a role in the repression of neuronal genes. Alone, it is unable to demethylate H3K4me on nucleosomes and requires the presence of RCOR1/CoREST to achieve such activity. Also acts as a coactivator of androgen receptor (ANDR)-dependent transcription, by being recruited to ANDR target genes and mediating demethylation of H3K9me, a specific tag for epigenetic transcriptional repression. The presence of PRKCB in ANDR-containing complexes, which mediates phosphorylation of 'Thr-6' of histone H3 (H3T6ph), a specific tag that prevents demethylation H3K4me, prevents H3K4me demethylase activity of KDM1A. Demethylates di-methylated 'Lys-370' of p53/TP53 which prevents interaction of p53/TP53 with TP53BP1 and represses p53/TP53-mediated transcriptional activation. Demethylates and stabilizes the DNA methylase DNMT1. Required for gastrulation during embryogenesis. Component of a RCOR/GFI/KDM1A/HDAC complex that suppresses, via histone deacetylase (HDAC) recruitment, a number of genes implicated in multilineage blood cell development.[1] [2] [3] [4] [5]
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
SWIRM is an evolutionarily conserved domain involved in several chromatin-modifying complexes. Recently, the LSD1 protein, which bears a SWIRM domain, was found to be a demethylase for Lys4-methylated histone H3. Here, we report a solution structure of the SWIRM domain of human LSD1. It forms a compact fold composed of 6 alpha helices, in which a 20 amino acid long helix (alpha4) is surrounded by 5 other short helices. The SWIRM domain structure could be divided into the N-terminal part (alpha1-alpha3) and the C-terminal part (alpha4-alpha6), which are connected to each other by a salt bridge. While the N-terminal part forms a SWIRM-specific structure, the C-terminal part adopts a helix-turn-helix (HTH)-related fold. We discuss a model in which the SWIRM domain acts as an anchor site for a histone tail.
Solution structure of the SWIRM domain of human histone demethylase LSD1.,Tochio N, Umehara T, Koshiba S, Inoue M, Yabuki T, Aoki M, Seki E, Watanabe S, Tomo Y, Hanada M, Ikari M, Sato M, Terada T, Nagase T, Ohara O, Shirouzu M, Tanaka A, Kigawa T, Yokoyama S Structure. 2006 Mar;14(3):457-68. PMID:16531230[6]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Hakimi MA, Bochar DA, Chenoweth J, Lane WS, Mandel G, Shiekhattar R. A core-BRAF35 complex containing histone deacetylase mediates repression of neuronal-specific genes. Proc Natl Acad Sci U S A. 2002 May 28;99(11):7420-5. PMID:12032298 doi:10.1073/pnas.112008599
- ↑ Shi Y, Lan F, Matson C, Mulligan P, Whetstine JR, Cole PA, Casero RA, Shi Y. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell. 2004 Dec 29;119(7):941-53. PMID:15620353 doi:http://dx.doi.org/10.1016/j.cell.2004.12.012
- ↑ Metzger E, Wissmann M, Yin N, Muller JM, Schneider R, Peters AH, Gunther T, Buettner R, Schule R. LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription. Nature. 2005 Sep 15;437(7057):436-9. Epub 2005 Aug 3. PMID:16079795 doi:http://dx.doi.org/10.1038/nature04020
- ↑ Huang J, Sengupta R, Espejo AB, Lee MG, Dorsey JA, Richter M, Opravil S, Shiekhattar R, Bedford MT, Jenuwein T, Berger SL. p53 is regulated by the lysine demethylase LSD1. Nature. 2007 Sep 6;449(7158):105-8. PMID:17805299 doi:nature06092
- ↑ Metzger E, Imhof A, Patel D, Kahl P, Hoffmeyer K, Friedrichs N, Muller JM, Greschik H, Kirfel J, Ji S, Kunowska N, Beisenherz-Huss C, Gunther T, Buettner R, Schule R. Phosphorylation of histone H3T6 by PKCbeta(I) controls demethylation at histone H3K4. Nature. 2010 Apr 1;464(7289):792-6. doi: 10.1038/nature08839. Epub 2010 Mar 14. PMID:20228790 doi:http://dx.doi.org/10.1038/nature08839
- ↑ Tochio N, Umehara T, Koshiba S, Inoue M, Yabuki T, Aoki M, Seki E, Watanabe S, Tomo Y, Hanada M, Ikari M, Sato M, Terada T, Nagase T, Ohara O, Shirouzu M, Tanaka A, Kigawa T, Yokoyama S. Solution structure of the SWIRM domain of human histone demethylase LSD1. Structure. 2006 Mar;14(3):457-68. PMID:16531230 doi:10.1016/j.str.2005.12.004
|