|
|
(11 intermediate revisions not shown.) |
Line 1: |
Line 1: |
- | {{Seed}} | |
- | [[Image:3bet.jpg|left|200px]] | |
| | | |
- | <!-- | + | ==Crystal structure of the human carbonic anhydrase II in complex with STX 641 at 1.85 angstroms resolution== |
- | The line below this paragraph, containing "STRUCTURE_3bet", creates the "Structure Box" on the page.
| + | <StructureSection load='3bet' size='340' side='right'caption='[[3bet]], [[Resolution|resolution]] 1.85Å' scene=''> |
- | You may change the PDB parameter (which sets the PDB file loaded into the applet) | + | == Structural highlights == |
- | or the SCENE parameter (which sets the initial scene displayed when the page is loaded),
| + | <table><tr><td colspan='2'>[[3bet]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3BET OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3BET FirstGlance]. <br> |
- | or leave the SCENE parameter empty for the default display.
| + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.85Å</td></tr> |
- | --> | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CTF:(17BETA)-17-(CYANOMETHYL)-2-METHOXYESTRA-1(10),2,4-TRIEN-3-YL+SULFAMATE'>CTF</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr> |
- | {{STRUCTURE_3bet| PDB=3bet | SCENE= }}
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3bet FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3bet OCA], [https://pdbe.org/3bet PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3bet RCSB], [https://www.ebi.ac.uk/pdbsum/3bet PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3bet ProSAT]</span></td></tr> |
| + | </table> |
| + | == Disease == |
| + | [https://www.uniprot.org/uniprot/CAH2_HUMAN CAH2_HUMAN] Defects in CA2 are the cause of osteopetrosis autosomal recessive type 3 (OPTB3) [MIM:[https://omim.org/entry/259730 259730]; also known as osteopetrosis with renal tubular acidosis, carbonic anhydrase II deficiency syndrome, Guibaud-Vainsel syndrome or marble brain disease. Osteopetrosis is a rare genetic disease characterized by abnormally dense bone, due to defective resorption of immature bone. The disorder occurs in two forms: a severe autosomal recessive form occurring in utero, infancy, or childhood, and a benign autosomal dominant form occurring in adolescence or adulthood. Autosomal recessive osteopetrosis is usually associated with normal or elevated amount of non-functional osteoclasts. OPTB3 is associated with renal tubular acidosis, cerebral calcification (marble brain disease) and in some cases with mental retardation.<ref>PMID:1928091</ref> <ref>PMID:1542674</ref> <ref>PMID:8834238</ref> <ref>PMID:9143915</ref> <ref>PMID:15300855</ref> |
| + | == Function == |
| + | [https://www.uniprot.org/uniprot/CAH2_HUMAN CAH2_HUMAN] Essential for bone resorption and osteoclast differentiation (By similarity). Reversible hydration of carbon dioxide. Can hydrate cyanamide to urea. Involved in the regulation of fluid secretion into the anterior chamber of the eye.<ref>PMID:10550681</ref> <ref>PMID:11831900</ref> |
| + | == Evolutionary Conservation == |
| + | [[Image:Consurf_key_small.gif|200px|right]] |
| + | Check<jmol> |
| + | <jmolCheckbox> |
| + | <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/be/3bet_consurf.spt"</scriptWhenChecked> |
| + | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> |
| + | <text>to colour the structure by Evolutionary Conservation</text> |
| + | </jmolCheckbox> |
| + | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=3bet ConSurf]. |
| + | <div style="clear:both"></div> |
| + | <div style="background-color:#fffaf0;"> |
| + | == Publication Abstract from PubMed == |
| + | The synthesis, SAR, and preclinical evaluation of 17-cyanated 2-substituted estra-1,3,5(10)-trienes as anticancer agents are discussed. 2-Methoxy-17beta-cyanomethylestra-1,3,5(10)-trien-3-ol ( 14), but not the related 2-ethyl derivative 7, and the related 3- O-sulfamates 8 and 15 display potent antiproliferative effects (MCF-7 GI 50 300, 60 and 70 nM, respectively) against human cancer cells in vitro. Investigation of the SAR reveals that a sterically unhindered hydrogen bond acceptor attached to C-17 is most likely key to the enhanced activity. Compound 8 displayed significant in vitro antiangiogenic activity, and its ability to act as a microtubule disruptor was confirmed. Inhibitory activity of the sulfamate derivatives against steroid sulfatase and carbonic anhydrase II (hCAII) was also observed, and the interaction between 15 and hCAII was investigated by protein crystallography. The potential of these multimechanism anticancer agents was confirmed in vivo, with promising activity observed for both 14 and 15 in an athymic nude mouse MDA-MB-231 human breast cancer xenograft model. |
| | | |
- | ===Crystal structure of the human carbonic anhydrase II in complex with STX 641 at 1.85 angstroms resolution===
| + | Structure-activity relationships of C-17 cyano-substituted estratrienes as anticancer agents.,Leese MP, Jourdan FL, Gaukroger K, Mahon MF, Newman SP, Foster PA, Stengel C, Regis-Lydi S, Ferrandis E, Di Fiore A, De Simone G, Supuran CT, Purohit A, Reed MJ, Potter BV J Med Chem. 2008 Mar 13;51(5):1295-308. Epub 2008 Feb 9. PMID:18260615<ref>PMID:18260615</ref> |
| | | |
| + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> |
| + | </div> |
| + | <div class="pdbe-citations 3bet" style="background-color:#fffaf0;"></div> |
| | | |
- | <!--
| + | ==See Also== |
- | The line below this paragraph, {{ABSTRACT_PUBMED_18260615}}, adds the Publication Abstract to the page
| + | *[[Carbonic anhydrase 3D structures|Carbonic anhydrase 3D structures]] |
- | (as it appears on PubMed at http://www.pubmed.gov), where 18260615 is the PubMed ID number.
| + | == References == |
- | -->
| + | <references/> |
- | {{ABSTRACT_PUBMED_18260615}}
| + | __TOC__ |
- | | + | </StructureSection> |
- | ==About this Structure== | + | |
- | 3BET is a [[Single protein]] structure of sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3BET OCA].
| + | |
- | | + | |
- | ==Reference== | + | |
- | Structure-activity relationships of C-17 cyano-substituted estratrienes as anticancer agents., Leese MP, Jourdan FL, Gaukroger K, Mahon MF, Newman SP, Foster PA, Stengel C, Regis-Lydi S, Ferrandis E, Di Fiore A, De Simone G, Supuran CT, Purohit A, Reed MJ, Potter BV, J Med Chem. 2008 Mar 13;51(5):1295-308. Epub 2008 Feb 9. PMID:[http://www.ncbi.nlm.nih.gov/pubmed/18260615 18260615]
| + | |
- | | + | |
- | Refined structure of human carbonic anhydrase II at 2.0 A resolution., Eriksson AE, Jones TA, Liljas A, Proteins. 1988;4(4):274-82. PMID:[http://www.ncbi.nlm.nih.gov/pubmed/3151019 3151019]
| + | |
- | | + | |
- | 2-substituted estradiol bis-sulfamates, multitargeted antitumor agents: synthesis, in vitro SAR, protein crystallography, and in vivo activity., Leese MP, Leblond B, Smith A, Newman SP, Di Fiore A, De Simone G, Supuran CT, Purohit A, Reed MJ, Potter BV, J Med Chem. 2006 Dec 28;49(26):7683-96. PMID:[http://www.ncbi.nlm.nih.gov/pubmed/17181151 17181151]
| + | |
- | [[Category: Carbonate dehydratase]]
| + | |
| [[Category: Homo sapiens]] | | [[Category: Homo sapiens]] |
- | [[Category: Single protein]] | + | [[Category: Large Structures]] |
- | [[Category: Fiore, A Di.]]
| + | [[Category: De Simone G]] |
- | [[Category: Simone, G De.]] | + | [[Category: Di Fiore A]] |
- | [[Category: Acetylation]] | + | |
- | [[Category: Cytoplasm]]
| + | |
- | [[Category: Disease mutation]]
| + | |
- | [[Category: Lyase]]
| + | |
- | [[Category: Metal-binding]]
| + | |
- | [[Category: Polymorphism]]
| + | |
- | [[Category: Protein-inhibitor complex]]
| + | |
- | [[Category: Zinc]]
| + | |
- | | + | |
- | ''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Wed Oct 8 09:26:21 2008''
| + | |
| Structural highlights
Disease
CAH2_HUMAN Defects in CA2 are the cause of osteopetrosis autosomal recessive type 3 (OPTB3) [MIM:259730; also known as osteopetrosis with renal tubular acidosis, carbonic anhydrase II deficiency syndrome, Guibaud-Vainsel syndrome or marble brain disease. Osteopetrosis is a rare genetic disease characterized by abnormally dense bone, due to defective resorption of immature bone. The disorder occurs in two forms: a severe autosomal recessive form occurring in utero, infancy, or childhood, and a benign autosomal dominant form occurring in adolescence or adulthood. Autosomal recessive osteopetrosis is usually associated with normal or elevated amount of non-functional osteoclasts. OPTB3 is associated with renal tubular acidosis, cerebral calcification (marble brain disease) and in some cases with mental retardation.[1] [2] [3] [4] [5]
Function
CAH2_HUMAN Essential for bone resorption and osteoclast differentiation (By similarity). Reversible hydration of carbon dioxide. Can hydrate cyanamide to urea. Involved in the regulation of fluid secretion into the anterior chamber of the eye.[6] [7]
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
The synthesis, SAR, and preclinical evaluation of 17-cyanated 2-substituted estra-1,3,5(10)-trienes as anticancer agents are discussed. 2-Methoxy-17beta-cyanomethylestra-1,3,5(10)-trien-3-ol ( 14), but not the related 2-ethyl derivative 7, and the related 3- O-sulfamates 8 and 15 display potent antiproliferative effects (MCF-7 GI 50 300, 60 and 70 nM, respectively) against human cancer cells in vitro. Investigation of the SAR reveals that a sterically unhindered hydrogen bond acceptor attached to C-17 is most likely key to the enhanced activity. Compound 8 displayed significant in vitro antiangiogenic activity, and its ability to act as a microtubule disruptor was confirmed. Inhibitory activity of the sulfamate derivatives against steroid sulfatase and carbonic anhydrase II (hCAII) was also observed, and the interaction between 15 and hCAII was investigated by protein crystallography. The potential of these multimechanism anticancer agents was confirmed in vivo, with promising activity observed for both 14 and 15 in an athymic nude mouse MDA-MB-231 human breast cancer xenograft model.
Structure-activity relationships of C-17 cyano-substituted estratrienes as anticancer agents.,Leese MP, Jourdan FL, Gaukroger K, Mahon MF, Newman SP, Foster PA, Stengel C, Regis-Lydi S, Ferrandis E, Di Fiore A, De Simone G, Supuran CT, Purohit A, Reed MJ, Potter BV J Med Chem. 2008 Mar 13;51(5):1295-308. Epub 2008 Feb 9. PMID:18260615[8]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Venta PJ, Welty RJ, Johnson TM, Sly WS, Tashian RE. Carbonic anhydrase II deficiency syndrome in a Belgian family is caused by a point mutation at an invariant histidine residue (107 His----Tyr): complete structure of the normal human CA II gene. Am J Hum Genet. 1991 Nov;49(5):1082-90. PMID:1928091
- ↑ Roth DE, Venta PJ, Tashian RE, Sly WS. Molecular basis of human carbonic anhydrase II deficiency. Proc Natl Acad Sci U S A. 1992 Mar 1;89(5):1804-8. PMID:1542674
- ↑ Soda H, Yukizane S, Yoshida I, Koga Y, Aramaki S, Kato H. A point mutation in exon 3 (His 107-->Tyr) in two unrelated Japanese patients with carbonic anhydrase II deficiency with central nervous system involvement. Hum Genet. 1996 Apr;97(4):435-7. PMID:8834238
- ↑ Hu PY, Lim EJ, Ciccolella J, Strisciuglio P, Sly WS. Seven novel mutations in carbonic anhydrase II deficiency syndrome identified by SSCP and direct sequencing analysis. Hum Mutat. 1997;9(5):383-7. PMID:9143915 doi:<383::AID-HUMU1>3.0.CO;2-5 10.1002/(SICI)1098-1004(1997)9:5<383::AID-HUMU1>3.0.CO;2-5
- ↑ Shah GN, Bonapace G, Hu PY, Strisciuglio P, Sly WS. Carbonic anhydrase II deficiency syndrome (osteopetrosis with renal tubular acidosis and brain calcification): novel mutations in CA2 identified by direct sequencing expand the opportunity for genotype-phenotype correlation. Hum Mutat. 2004 Sep;24(3):272. PMID:15300855 doi:10.1002/humu.9266
- ↑ Briganti F, Mangani S, Scozzafava A, Vernaglione G, Supuran CT. Carbonic anhydrase catalyzes cyanamide hydration to urea: is it mimicking the physiological reaction? J Biol Inorg Chem. 1999 Oct;4(5):528-36. PMID:10550681
- ↑ Kim CY, Whittington DA, Chang JS, Liao J, May JA, Christianson DW. Structural aspects of isozyme selectivity in the binding of inhibitors to carbonic anhydrases II and IV. J Med Chem. 2002 Feb 14;45(4):888-93. PMID:11831900
- ↑ Leese MP, Jourdan FL, Gaukroger K, Mahon MF, Newman SP, Foster PA, Stengel C, Regis-Lydi S, Ferrandis E, Di Fiore A, De Simone G, Supuran CT, Purohit A, Reed MJ, Potter BV. Structure-activity relationships of C-17 cyano-substituted estratrienes as anticancer agents. J Med Chem. 2008 Mar 13;51(5):1295-308. Epub 2008 Feb 9. PMID:18260615 doi:10.1021/jm701319c
|