2k9p
From Proteopedia
(Difference between revisions)
| (13 intermediate revisions not shown.) | |||
| Line 1: | Line 1: | ||
| - | '''Unreleased structure''' | ||
| - | + | ==Structure of TM1_TM2 in LPPG micelles== | |
| + | <StructureSection load='2k9p' size='340' side='right'caption='[[2k9p]]' scene=''> | ||
| + | == Structural highlights == | ||
| + | <table><tr><td colspan='2'>[[2k9p]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Saccharomyces_cerevisiae Saccharomyces cerevisiae]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2K9P OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2K9P FirstGlance]. <br> | ||
| + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Solution NMR</td></tr> | ||
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2k9p FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2k9p OCA], [https://pdbe.org/2k9p PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2k9p RCSB], [https://www.ebi.ac.uk/pdbsum/2k9p PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2k9p ProSAT]</span></td></tr> | ||
| + | </table> | ||
| + | == Function == | ||
| + | [https://www.uniprot.org/uniprot/STE2_YEAST STE2_YEAST] Receptor for the peptide pheromone alpha factor, the mating factor of yeast. | ||
| + | == Evolutionary Conservation == | ||
| + | [[Image:Consurf_key_small.gif|200px|right]] | ||
| + | Check<jmol> | ||
| + | <jmolCheckbox> | ||
| + | <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/k9/2k9p_consurf.spt"</scriptWhenChecked> | ||
| + | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | ||
| + | <text>to colour the structure by Evolutionary Conservation</text> | ||
| + | </jmolCheckbox> | ||
| + | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=2k9p ConSurf]. | ||
| + | <div style="clear:both"></div> | ||
| + | <div style="background-color:#fffaf0;"> | ||
| + | == Publication Abstract from PubMed == | ||
| + | The structure and dynamic properties of an 80-residue fragment of Ste2p, the G-protein-coupled receptor for alpha-factor of Saccharomyces cerevisiae, was studied in LPPG micelles with the use of solution NMR spectroscopy. The fragment Ste2p(G31-T110) (TM1-TM2) consisted of 19 residues from the N-terminal domain, the first TM helix (TM1), the first cytoplasmic loop, the second TM helix (TM2), and seven residues from the first extracellular loop. Multidimensional NMR experiments on [(15)N], [(15)N, (13)C], [(15)N, (13)C, (2)H]-labeled TM1-TM2 and on protein fragments selectively labeled at specific amino acid residues or protonated at selected methyl groups resulted in >95% assignment of backbone and side-chain nuclei. The NMR investigation revealed the secondary structure of specific residues of TM1-TM2. TALOS constraints and NOE connectivities were used to calculate a structure for TM1-TM2 that was highlighted by the presence of three alpha-helices encompassing residues 39-47, 49-72, and 80-103, with higher flexibility around the internal Arg(58) site of TM1. RMSD values of individually superimposed helical segments 39-47, 49-72, and 80-103 were 0.25 +/- 0.10 A, 0.40 +/- 0.13 A, and 0.57 +/- 0.19 A, respectively. Several long-range interhelical connectivities supported the folding of TM1-TM2 into a tertiary structure typified by a crossed helix that splays apart toward the extracellular regions and contains considerable flexibility in the G(56)VRSG(60) region. (15)N-relaxation and hydrogen-deuterium exchange data support a stable fold for the TM parts of TM1-TM2, whereas the solvent-exposed segments are more flexible. The NMR structure is consistent with the results of biochemical experiments that identified the ligand-binding site within this region of the receptor. | ||
| - | + | Structure of a double transmembrane fragment of a G-protein-coupled receptor in micelles.,Neumoin A, Cohen LS, Arshava B, Tantry S, Becker JM, Zerbe O, Naider F Biophys J. 2009 Apr 22;96(8):3187-96. PMID:19383463<ref>PMID:19383463</ref> | |
| - | + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |
| - | + | </div> | |
| - | + | <div class="pdbe-citations 2k9p" style="background-color:#fffaf0;"></div> | |
| + | == References == | ||
| + | <references/> | ||
| + | __TOC__ | ||
| + | </StructureSection> | ||
| + | [[Category: Large Structures]] | ||
| + | [[Category: Saccharomyces cerevisiae]] | ||
| + | [[Category: Naider F]] | ||
| + | [[Category: Neumoin N]] | ||
| + | [[Category: Zerbe O]] | ||
Current revision
Structure of TM1_TM2 in LPPG micelles
| |||||||||||

