|
|
(8 intermediate revisions not shown.) |
Line 1: |
Line 1: |
- | {{Seed}} | |
- | [[Image:2zpn.png|left|200px]] | |
| | | |
- | <!--
| + | ==The crystal structure of Saccharomyces cerevisiae Atg8- Atg19(412-415) complex== |
- | The line below this paragraph, containing "STRUCTURE_2zpn", creates the "Structure Box" on the page.
| + | <StructureSection load='2zpn' size='340' side='right'caption='[[2zpn]], [[Resolution|resolution]] 2.70Å' scene=''> |
- | You may change the PDB parameter (which sets the PDB file loaded into the applet)
| + | == Structural highlights == |
- | or the SCENE parameter (which sets the initial scene displayed when the page is loaded),
| + | <table><tr><td colspan='2'>[[2zpn]] is a 8 chain structure with sequence from [https://en.wikipedia.org/wiki/Saccharomyces_cerevisiae Saccharomyces cerevisiae] and [https://en.wikipedia.org/wiki/Saccharomyces_cerevisiae_S288C Saccharomyces cerevisiae S288C]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2ZPN OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2ZPN FirstGlance]. <br> |
- | or leave the SCENE parameter empty for the default display.
| + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.7Å</td></tr> |
- | --> | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr> |
- | {{STRUCTURE_2zpn| PDB=2zpn | SCENE= }}
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2zpn FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2zpn OCA], [https://pdbe.org/2zpn PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2zpn RCSB], [https://www.ebi.ac.uk/pdbsum/2zpn PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2zpn ProSAT]</span></td></tr> |
| + | </table> |
| + | == Function == |
| + | [https://www.uniprot.org/uniprot/ATG8_YEAST ATG8_YEAST] Involved in cytoplasm to vacuole transport (Cvt) vesicles and autophagosomes formation. With ATG4, may mediate the delivery of the vesicles and autophagosomes to the vacuole via the microtubule cytoskeleton. Participates also in membrane fusion events that take place in the early secretory pathway.<ref>PMID:8224160</ref> <ref>PMID:7593182</ref> <ref>PMID:9649430</ref> <ref>PMID:10525546</ref> <ref>PMID:10681575</ref> <ref>PMID:10837468</ref> <ref>PMID:11038174</ref> <ref>PMID:11100732</ref> <ref>PMID:11149920</ref> |
| + | == Evolutionary Conservation == |
| + | [[Image:Consurf_key_small.gif|200px|right]] |
| + | Check<jmol> |
| + | <jmolCheckbox> |
| + | <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/zp/2zpn_consurf.spt"</scriptWhenChecked> |
| + | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> |
| + | <text>to colour the structure by Evolutionary Conservation</text> |
| + | </jmolCheckbox> |
| + | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=2zpn ConSurf]. |
| + | <div style="clear:both"></div> |
| + | <div style="background-color:#fffaf0;"> |
| + | == Publication Abstract from PubMed == |
| + | Autophagy is a non-selective bulk degradation process in which isolation membranes enclose a portion of cytoplasm to form double-membrane vesicles, called autophagosomes, and deliver their inner constituents to the lytic compartments. Recent studies have also shed light on another mode of autophagy that selectively degrades various targets. Yeast Atg8 and its mammalian homologue LC3 are ubiquitin-like modifiers that are localized on isolation membranes and play crucial roles in the formation of autophagosomes. These proteins are also involved in selective incorporation of specific cargo molecules into autophagosomes, in which Atg8 and LC3 interact with Atg19 and p62, receptor proteins for vacuolar enzymes and disease-related protein aggregates, respectively. Using X-ray crystallography and NMR, we herein report the structural basis for Atg8-Atg19 and LC3-p62 interactions. Remarkably, Atg8 and LC3 were shown to interact with Atg19 and p62, respectively, in a quite similar manner: they recognized the side-chains of Trp and Leu in a four-amino acid motif, WXXL, in Atg19 and p62 using hydrophobic pockets conserved among Atg8 homologues. Together with mutational analyses, our results show the fundamental mechanism that allows Atg8 homologues, in association with WXXL-containing proteins, to capture specific cargo molecules, thereby endowing isolation membranes and/or their assembly machineries with target selectivity. |
| | | |
- | ===The crystal structure of Saccharomyces cerevisiae Atg8- Atg19(412-415) complex===
| + | Structural basis of target recognition by Atg8/LC3 during selective autophagy.,Noda NN, Kumeta H, Nakatogawa H, Satoo K, Adachi W, Ishii J, Fujioka Y, Ohsumi Y, Inagaki F Genes Cells. 2008 Oct 22. PMID:19021777<ref>PMID:19021777</ref> |
| | | |
| + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> |
| + | </div> |
| + | <div class="pdbe-citations 2zpn" style="background-color:#fffaf0;"></div> |
| | | |
- | <!--
| + | ==See Also== |
- | The line below this paragraph, {{ABSTRACT_PUBMED_19021777}}, adds the Publication Abstract to the page
| + | *[[Autophagy-related protein 3D structures|Autophagy-related protein 3D structures]] |
- | (as it appears on PubMed at http://www.pubmed.gov), where 19021777 is the PubMed ID number.
| + | == References == |
- | -->
| + | <references/> |
- | {{ABSTRACT_PUBMED_19021777}}
| + | __TOC__ |
- | | + | </StructureSection> |
- | ==About this Structure== | + | [[Category: Large Structures]] |
- | 2ZPN is a [[Protein complex]] structure of sequences from [http://en.wikipedia.org/wiki/Saccharomyces_cerevisiae Saccharomyces cerevisiae]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2ZPN OCA].
| + | |
- | | + | |
- | ==Reference== | + | |
- | Structural basis of target recognition by Atg8/LC3 during selective autophagy., Noda NN, Kumeta H, Nakatogawa H, Satoo K, Adachi W, Ishii J, Fujioka Y, Ohsumi Y, Inagaki F, Genes Cells. 2008 Oct 22. PMID:[http://www.ncbi.nlm.nih.gov/pubmed/19021777 19021777]
| + | |
- | [[Category: Protein complex]] | + | |
| [[Category: Saccharomyces cerevisiae]] | | [[Category: Saccharomyces cerevisiae]] |
- | [[Category: Pdbx_ordinal=, <PDBx:audit_author.]] | + | [[Category: Saccharomyces cerevisiae S288C]] |
- | [[Category: Autophagy]] | + | [[Category: Inagaki F]] |
- | [[Category: Cytoplasmic vesicle]] | + | [[Category: Noda NN]] |
- | [[Category: Lipoprotein]]
| + | |
- | [[Category: Membrane]]
| + | |
- | [[Category: Protein transport]]
| + | |
- | [[Category: Transport]]
| + | |
- | [[Category: Ubiquitin fold]]
| + | |
- | [[Category: Ubl conjugation pathway]]
| + | |
- | [[Category: Vacuole]]
| + | |
- | | + | |
- | ''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Wed Dec 31 20:11:51 2008''
| + | |
| Structural highlights
Function
ATG8_YEAST Involved in cytoplasm to vacuole transport (Cvt) vesicles and autophagosomes formation. With ATG4, may mediate the delivery of the vesicles and autophagosomes to the vacuole via the microtubule cytoskeleton. Participates also in membrane fusion events that take place in the early secretory pathway.[1] [2] [3] [4] [5] [6] [7] [8] [9]
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
Autophagy is a non-selective bulk degradation process in which isolation membranes enclose a portion of cytoplasm to form double-membrane vesicles, called autophagosomes, and deliver their inner constituents to the lytic compartments. Recent studies have also shed light on another mode of autophagy that selectively degrades various targets. Yeast Atg8 and its mammalian homologue LC3 are ubiquitin-like modifiers that are localized on isolation membranes and play crucial roles in the formation of autophagosomes. These proteins are also involved in selective incorporation of specific cargo molecules into autophagosomes, in which Atg8 and LC3 interact with Atg19 and p62, receptor proteins for vacuolar enzymes and disease-related protein aggregates, respectively. Using X-ray crystallography and NMR, we herein report the structural basis for Atg8-Atg19 and LC3-p62 interactions. Remarkably, Atg8 and LC3 were shown to interact with Atg19 and p62, respectively, in a quite similar manner: they recognized the side-chains of Trp and Leu in a four-amino acid motif, WXXL, in Atg19 and p62 using hydrophobic pockets conserved among Atg8 homologues. Together with mutational analyses, our results show the fundamental mechanism that allows Atg8 homologues, in association with WXXL-containing proteins, to capture specific cargo molecules, thereby endowing isolation membranes and/or their assembly machineries with target selectivity.
Structural basis of target recognition by Atg8/LC3 during selective autophagy.,Noda NN, Kumeta H, Nakatogawa H, Satoo K, Adachi W, Ishii J, Fujioka Y, Ohsumi Y, Inagaki F Genes Cells. 2008 Oct 22. PMID:19021777[10]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Tsukada M, Ohsumi Y. Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett. 1993 Oct 25;333(1-2):169-74. PMID:8224160
- ↑ Harding TM, Morano KA, Scott SV, Klionsky DJ. Isolation and characterization of yeast mutants in the cytoplasm to vacuole protein targeting pathway. J Cell Biol. 1995 Nov;131(3):591-602. PMID:7593182
- ↑ Lang T, Schaeffeler E, Bernreuther D, Bredschneider M, Wolf DH, Thumm M. Aut2p and Aut7p, two novel microtubule-associated proteins are essential for delivery of autophagic vesicles to the vacuole. EMBO J. 1998 Jul 1;17(13):3597-607. PMID:9649430 doi:10.1093/emboj/17.13.3597
- ↑ Kirisako T, Baba M, Ishihara N, Miyazawa K, Ohsumi M, Yoshimori T, Noda T, Ohsumi Y. Formation process of autophagosome is traced with Apg8/Aut7p in yeast. J Cell Biol. 1999 Oct 18;147(2):435-46. PMID:10525546
- ↑ Huang WP, Scott SV, Kim J, Klionsky DJ. The itinerary of a vesicle component, Aut7p/Cvt5p, terminates in the yeast vacuole via the autophagy/Cvt pathways. J Biol Chem. 2000 Feb 25;275(8):5845-51. PMID:10681575
- ↑ Legesse-Miller A, Sagiv Y, Glozman R, Elazar Z. Aut7p, a soluble autophagic factor, participates in multiple membrane trafficking processes. J Biol Chem. 2000 Oct 20;275(42):32966-73. PMID:10837468 doi:10.1074/jbc.M000917200
- ↑ Kirisako T, Ichimura Y, Okada H, Kabeya Y, Mizushima N, Yoshimori T, Ohsumi M, Takao T, Noda T, Ohsumi Y. The reversible modification regulates the membrane-binding state of Apg8/Aut7 essential for autophagy and the cytoplasm to vacuole targeting pathway. J Cell Biol. 2000 Oct 16;151(2):263-76. PMID:11038174
- ↑ Ichimura Y, Kirisako T, Takao T, Satomi Y, Shimonishi Y, Ishihara N, Mizushima N, Tanida I, Kominami E, Ohsumi M, Noda T, Ohsumi Y. A ubiquitin-like system mediates protein lipidation. Nature. 2000 Nov 23;408(6811):488-92. PMID:11100732 doi:10.1038/35044114
- ↑ Kim J, Huang WP, Klionsky DJ. Membrane recruitment of Aut7p in the autophagy and cytoplasm to vacuole targeting pathways requires Aut1p, Aut2p, and the autophagy conjugation complex. J Cell Biol. 2001 Jan 8;152(1):51-64. PMID:11149920
- ↑ Noda NN, Kumeta H, Nakatogawa H, Satoo K, Adachi W, Ishii J, Fujioka Y, Ohsumi Y, Inagaki F. Structural basis of target recognition by Atg8/LC3 during selective autophagy. Genes Cells. 2008 Oct 22. PMID:19021777 doi:GTC1238
|