We apologize for Proteopedia being slow to respond. For the past two years, a new implementation of Proteopedia has been being built. Soon, it will replace this 18-year old system. All existing content will be moved to the new system at a date that will be announced here.

3fkv

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Current revision (09:08, 30 October 2024) (edit) (undo)
 
(10 intermediate revisions not shown.)
Line 1: Line 1:
-
'''Unreleased structure'''
 
-
The entry 3fkv is ON HOLD until Paper Publication
+
==AmpC K67R mutant complexed with benzo(b)thiophene-2-boronic acid (bzb)==
 +
<StructureSection load='3fkv' size='340' side='right'caption='[[3fkv]], [[Resolution|resolution]] 1.85&Aring;' scene=''>
 +
== Structural highlights ==
 +
<table><tr><td colspan='2'>[[3fkv]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_coli Escherichia coli]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3FKV OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3FKV FirstGlance]. <br>
 +
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.847&#8491;</td></tr>
 +
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=BZB:BENZO[B]THIOPHENE-2-BORONIC+ACID'>BZB</scene>, <scene name='pdbligand=K:POTASSIUM+ION'>K</scene>, <scene name='pdbligand=PO4:PHOSPHATE+ION'>PO4</scene></td></tr>
 +
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3fkv FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3fkv OCA], [https://pdbe.org/3fkv PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3fkv RCSB], [https://www.ebi.ac.uk/pdbsum/3fkv PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3fkv ProSAT]</span></td></tr>
 +
</table>
 +
== Function ==
 +
[https://www.uniprot.org/uniprot/AMPC_ECOLI AMPC_ECOLI] This protein is a serine beta-lactamase with a substrate specificity for cephalosporins.
 +
== Evolutionary Conservation ==
 +
[[Image:Consurf_key_small.gif|200px|right]]
 +
Check<jmol>
 +
<jmolCheckbox>
 +
<scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/fk/3fkv_consurf.spt"</scriptWhenChecked>
 +
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked>
 +
<text>to colour the structure by Evolutionary Conservation</text>
 +
</jmolCheckbox>
 +
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=3fkv ConSurf].
 +
<div style="clear:both"></div>
 +
<div style="background-color:#fffaf0;">
 +
== Publication Abstract from PubMed ==
 +
Lys67 is essential for the hydrolysis reaction mediated by class C beta-lactamases. Its exact catalytic role lies at the center of several different proposed reaction mechanisms, particularly for the deacylation step, and has been intensely debated. Whereas a conjugate base hypothesis postulates that a neutral Lys67 and Tyr150 act together to deprotonate the deacylating water, previous experiments on the K67R mutants of class C beta-lactamases suggested that the role of Lys67 in deacylation is mainly electrostatic, with only a 2- to 3-fold decrease in the rate of the mutant vs the wild type enzyme. Using the Class C beta-lactamase AmpC, we have reinvestigated the activity of this K67R mutant enzyme, using biochemical and structural studies. Both the rates of acylation and deacylation were affected in the AmpC K67R mutant, with a 61-fold decrease in k(cat), the deacylation rate. We have determined the structure of the K67R mutant by X-ray crystallography both in apo and transition state-analog complexed forms, and observed only minimal conformational changes in the catalytic residues relative to the wild type. These results suggest that the arginine side chain is unable to play the same catalytic role as Lys67 in either the acylation or deacylation reactions catalyzed by AmpC. Therefore, the activity of this mutant can not be used to discredit the conjugate base hypothesis as previously concluded, although the reaction catalyzed by the K67R mutant itself likely proceeds by an alternative mechanism. Indeed, a manifold of mechanisms may contribute to hydrolysis in class C beta-lactamases, depending on the enzyme (wt or mutant) and the substrate, explaining why different mutants and substrates seem to support different pathways. For the WT enzyme itself, the conjugate base mechanism may be well favored.
-
Authors: Chen, Y., McReynolds, A., Shoichet, B.K.
+
Re-examining the role of Lys67 in class C beta-lactamase catalysis.,Chen Y, McReynolds A, Shoichet BK Protein Sci. 2009 Mar;18(3):662-9. PMID:19241376<ref>PMID:19241376</ref>
-
Description: AmpC K67R mutant complexed with benzo(b)thiophene-2-boronic acid (bzb)
+
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 +
</div>
 +
<div class="pdbe-citations 3fkv" style="background-color:#fffaf0;"></div>
-
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Wed Jan 7 09:35:25 2009''
+
==See Also==
 +
*[[Beta-lactamase 3D structures|Beta-lactamase 3D structures]]
 +
== References ==
 +
<references/>
 +
__TOC__
 +
</StructureSection>
 +
[[Category: Escherichia coli]]
 +
[[Category: Large Structures]]
 +
[[Category: Chen Y]]
 +
[[Category: McReynolds A]]
 +
[[Category: Shoichet BK]]

Current revision

AmpC K67R mutant complexed with benzo(b)thiophene-2-boronic acid (bzb)

PDB ID 3fkv

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools