2w1i
From Proteopedia
(Difference between revisions)
(9 intermediate revisions not shown.) | |||
Line 1: | Line 1: | ||
- | {{Seed}} | ||
- | [[Image:2w1i.jpg|left|200px]] | ||
- | < | + | ==Structure determination of Aurora Kinase in complex with inhibitor== |
- | + | <StructureSection load='2w1i' size='340' side='right'caption='[[2w1i]], [[Resolution|resolution]] 2.60Å' scene=''> | |
- | + | == Structural highlights == | |
- | or the | + | <table><tr><td colspan='2'>[[2w1i]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2W1I OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2W1I FirstGlance]. <br> |
- | or | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.6Å</td></tr> |
- | --> | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=L0I:4-[(2-{4-[(CYCLOPROPYLCARBAMOYL)AMINO]-1H-PYRAZOL-3-YL}-1H-BENZIMIDAZOL-6-YL)METHYL]MORPHOLIN-4-IUM'>L0I</scene>, <scene name='pdbligand=PTR:O-PHOSPHOTYROSINE'>PTR</scene></td></tr> |
- | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2w1i FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2w1i OCA], [https://pdbe.org/2w1i PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2w1i RCSB], [https://www.ebi.ac.uk/pdbsum/2w1i PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2w1i ProSAT]</span></td></tr> | |
+ | </table> | ||
+ | == Disease == | ||
+ | [https://www.uniprot.org/uniprot/JAK2_HUMAN JAK2_HUMAN] Note=Chromosomal aberrations involving JAK2 are found in both chronic and acute forms of eosinophilic, lymphoblastic and myeloid leukemia. Translocation t(8;9)(p22;p24) with PCM1 links the protein kinase domain of JAK2 to the major portion of PCM1. Translocation t(9;12)(p24;p13) with ETV6. Defects in JAK2 are a cause of susceptibility to Budd-Chiari syndrome (BDCHS) [MIM:[https://omim.org/entry/600880 600880]. A syndrome caused by obstruction of hepatic venous outflow involving either the hepatic veins or the terminal segment of the inferior vena cava. Obstructions are generally caused by thrombosis and lead to hepatic congestion and ischemic necrosis. Clinical manifestations observed in the majority of patients include hepatomegaly, right upper quadrant pain and abdominal ascites. Budd-Chiari syndrome is associated with a combination of disease states including primary myeloproliferative syndromes and thrombophilia due to factor V Leiden, protein C deficiency and antithrombin III deficiency. Budd-Chiari syndrome is a rare but typical complication in patients with polycythemia vera. Defects in JAK2 are a cause of polycythemia vera (PV) [MIM:[https://omim.org/entry/263300 263300]. A myeloproliferative disorder characterized by abnormal proliferation of all hematopoietic bone marrow elements, erythroid hyperplasia, an absolute increase in total blood volume, but also by myeloid leukocytosis, thrombocytosis and splenomegaly.<ref>PMID:15781101</ref> <ref>PMID:15793561</ref> <ref>PMID:15858187</ref> <ref>PMID:16603627</ref> Defects in JAK2 gene may be the cause of thrombocythemia type 3 (THCYT3) [MIM:[https://omim.org/entry/614521 614521]. A myeloproliferative disorder characterized by elevated platelet levels due to sustained proliferation of megakaryocytes, and frequently lead to thrombotic and haemorrhagic complications.<ref>PMID:16325696</ref> <ref>PMID:22397670</ref> Defects in JAK2 are a cause of myelofibrosis (MYELOF) [MIM:[https://omim.org/entry/254450 254450]. Myelofibrosis is a disorder characterized by replacement of the bone marrow by fibrous tissue, occurring in association with a myeloproliferative disorder. Clinical manifestations may include anemia, pallor, splenomegaly, hypermetabolic state, petechiae, ecchymosis, bleeding, lymphadenopathy, hepatomegaly, portal hypertension. Defects in JAK2 are a cause of acute myelogenous leukemia (AML) [MIM:[https://omim.org/entry/601626 601626]. AML is a malignant disease in which hematopoietic precursors are arrested in an early stage of development.<ref>PMID:16247455</ref> | ||
+ | == Function == | ||
+ | [https://www.uniprot.org/uniprot/JAK2_HUMAN JAK2_HUMAN] Non-receptor tyrosine kinase involved in various processes such as cell growth, development, differentiation or histone modifications. Mediates essential signaling events in both innate and adaptive immunity. In the cytoplasm, plays a pivotal role in signal transduction via its association with type I receptors such as growth hormone (GHR), prolactin (PRLR), leptin (LEPR), erythropoietin (EPOR), thrombopoietin (THPO); or type II receptors including IFN-alpha, IFN-beta, IFN-gamma and multiple interleukins. Following ligand-binding to cell surface receptors, phosphorylates specific tyrosine residues on the cytoplasmic tails of the receptor, creating docking sites for STATs proteins. Subsequently, phosphorylates the STATs proteins once they are recruited to the receptor. Phosphorylated STATs then form homodimer or heterodimers and translocate to the nucleus to activate gene transcription. For example, cell stimulation with erythropoietin (EPO) during erythropoiesis leads to JAK2 autophosphorylation, activation, and its association with erythropoietin receptor (EPOR) that becomes phosphorylated in its cytoplasmic domain. Then, STAT5 (STAT5A or STAT5B) is recruited, phosphorylated and activated by JAK2. Once activated, dimerized STAT5 translocates into the nucleus and promotes the transcription of several essential genes involved in the modulation of erythropoiesis. In addition, JAK2 mediates angiotensin-2-induced ARHGEF1 phosphorylation. Plays a role in cell cycle by phosphorylating CDKN1B. Cooperates with TEC through reciprocal phosphorylation to mediate cytokine-driven activation of FOS transcription. In the nucleus, plays a key role in chromatin by specifically mediating phosphorylation of 'Tyr-41' of histone H3 (H3Y41ph), a specific tag that promotes exclusion of CBX5 (HP1 alpha) from chromatin.<ref>PMID:12023369</ref> <ref>PMID:19783980</ref> <ref>PMID:20098430</ref> <ref>PMID:21423214</ref> | ||
+ | == Evolutionary Conservation == | ||
+ | [[Image:Consurf_key_small.gif|200px|right]] | ||
+ | Check<jmol> | ||
+ | <jmolCheckbox> | ||
+ | <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/w1/2w1i_consurf.spt"</scriptWhenChecked> | ||
+ | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked> | ||
+ | <text>to colour the structure by Evolutionary Conservation</text> | ||
+ | </jmolCheckbox> | ||
+ | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=2w1i ConSurf]. | ||
+ | <div style="clear:both"></div> | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | Here, we describe the identification of a clinical candidate via structure-based optimization of a ligand efficient pyrazole-benzimidazole fragment. Aurora kinases play a key role in the regulation of mitosis and in recent years have become attractive targets for the treatment of cancer. X-ray crystallographic structures were generated using a novel soakable form of Aurora A and were used to drive the optimization toward potent (IC(50) approximately 3 nM) dual Aurora A/Aurora B inhibitors. These compounds inhibited growth and survival of HCT116 cells and produced the polyploid cellular phenotype typically associated with Aurora B kinase inhibition. Optimization of cellular activity and physicochemical properties ultimately led to the identification of compound 16 (AT9283). In addition to Aurora A and Aurora B, compound 16 was also found to inhibit a number of other kinases including JAK2 and Abl (T315I). This compound demonstrated in vivo efficacy in mouse xenograft models and is currently under evaluation in phase I clinical trials. | ||
- | + | Fragment-based discovery of the pyrazol-4-yl urea (AT9283), a multitargeted kinase inhibitor with potent aurora kinase activity.,Howard S, Berdini V, Boulstridge JA, Carr MG, Cross DM, Curry J, Devine LA, Early TR, Fazal L, Gill AL, Heathcote M, Maman S, Matthews JE, McMenamin RL, Navarro EF, O'Brien MA, O'Reilly M, Rees DC, Reule M, Tisi D, Williams G, Vinkovic M, Wyatt PG J Med Chem. 2009 Jan 22;52(2):379-88. PMID:19143567<ref>PMID:19143567</ref> | |
+ | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
+ | </div> | ||
+ | <div class="pdbe-citations 2w1i" style="background-color:#fffaf0;"></div> | ||
- | + | ==See Also== | |
- | + | *[[Janus kinase 3D structures|Janus kinase 3D structures]] | |
- | + | == References == | |
- | + | <references/> | |
- | + | __TOC__ | |
- | + | </StructureSection> | |
- | == | + | |
- | + | ||
- | + | ||
- | == | + | |
- | < | + | |
[[Category: Homo sapiens]] | [[Category: Homo sapiens]] | ||
- | [[Category: | + | [[Category: Large Structures]] |
- | [[Category: Berdini | + | [[Category: Berdini V]] |
- | [[Category: Boulstridge | + | [[Category: Boulstridge JA]] |
- | + | [[Category: Carr MG]] | |
- | [[Category: Carr | + | [[Category: Cross DM]] |
- | [[Category: Cross | + | [[Category: Curry J]] |
- | [[Category: Curry | + | [[Category: Devine LA]] |
- | [[Category: Devine | + | [[Category: Early TR]] |
- | [[Category: Early | + | [[Category: Fazal L]] |
- | [[Category: Fazal | + | [[Category: Gill AL]] |
- | [[Category: Gill | + | [[Category: Heathcote M]] |
- | [[Category: Heathcote | + | [[Category: Howard S]] |
- | [[Category: Howard | + | [[Category: Maman S]] |
- | [[Category: Maman | + | [[Category: Matthews JE]] |
- | [[Category: Matthews | + | [[Category: McMenamin RL]] |
- | [[Category: | + | [[Category: Navarro EF]] |
- | [[Category: Navarro | + | [[Category: O'Brien MA]] |
- | [[Category: | + | [[Category: O'Reilly M]] |
- | [[Category: Reilly | + | [[Category: Rees DC]] |
- | [[Category: Reule | + | [[Category: Reule M]] |
- | [[Category: Tisi | + | [[Category: Tisi D]] |
- | [[Category: Vinkovic | + | [[Category: Vinkovic M]] |
- | [[Category: Williams | + | [[Category: Williams G]] |
- | [[Category: Wyatt | + | [[Category: Wyatt PG]] |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + |
Current revision
Structure determination of Aurora Kinase in complex with inhibitor
|
Categories: Homo sapiens | Large Structures | Berdini V | Boulstridge JA | Carr MG | Cross DM | Curry J | Devine LA | Early TR | Fazal L | Gill AL | Heathcote M | Howard S | Maman S | Matthews JE | McMenamin RL | Navarro EF | O'Brien MA | O'Reilly M | Rees DC | Reule M | Tisi D | Vinkovic M | Williams G | Wyatt PG