3eu0
From Proteopedia
(Difference between revisions)
(10 intermediate revisions not shown.) | |||
Line 1: | Line 1: | ||
- | {{Seed}} | ||
- | [[Image:3eu0.png|left|200px]] | ||
- | < | + | ==Crystal structure of the S-nitrosylated Cys215 of PTP1B== |
- | + | <StructureSection load='3eu0' size='340' side='right'caption='[[3eu0]], [[Resolution|resolution]] 2.70Å' scene=''> | |
- | You may | + | == Structural highlights == |
- | + | <table><tr><td colspan='2'>[[3eu0]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3EU0 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3EU0 FirstGlance]. <br> | |
- | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.7Å</td></tr> | |
- | -- | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=SNC:S-NITROSO-CYSTEINE'>SNC</scene></td></tr> |
- | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3eu0 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3eu0 OCA], [https://pdbe.org/3eu0 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3eu0 RCSB], [https://www.ebi.ac.uk/pdbsum/3eu0 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3eu0 ProSAT]</span></td></tr> | |
+ | </table> | ||
+ | == Function == | ||
+ | [https://www.uniprot.org/uniprot/PTN1_HUMAN PTN1_HUMAN] Tyrosine-protein phosphatase which acts as a regulator of endoplasmic reticulum unfolded protein response. Mediates dephosphorylation of EIF2AK3/PERK; inactivating the protein kinase activity of EIF2AK3/PERK. May play an important role in CKII- and p60c-src-induced signal transduction cascades. May regulate the EFNA5-EPHA3 signaling pathway which modulates cell reorganization and cell-cell repulsion.<ref>PMID:21135139</ref> <ref>PMID:22169477</ref> | ||
+ | == Evolutionary Conservation == | ||
+ | [[Image:Consurf_key_small.gif|200px|right]] | ||
+ | Check<jmol> | ||
+ | <jmolCheckbox> | ||
+ | <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/eu/3eu0_consurf.spt"</scriptWhenChecked> | ||
+ | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked> | ||
+ | <text>to colour the structure by Evolutionary Conservation</text> | ||
+ | </jmolCheckbox> | ||
+ | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=3eu0 ConSurf]. | ||
+ | <div style="clear:both"></div> | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | Protein S-nitrosylation mediated by cellular nitric oxide (NO) plays a primary role in executing biological functions in cGMP-independent NO signaling. Although S-nitrosylation appears similar to Cys oxidation induced by reactive oxygen species, the molecular mechanism and biological consequence remain unclear. We investigated the structural process of S-nitrosylation of protein-tyrosine phosphatase 1B (PTP1B). We treated PTP1B with various NO donors, including S-nitrosothiol reagents and compound-releasing NO radicals, to produce site-specific Cys S-nitrosylation identified using advanced mass spectrometry (MS) techniques. Quantitative MS showed that the active site Cys-215 was the primary residue susceptible to S-nitrosylation. The crystal structure of NO donor-reacted PTP1B at 2.6 A resolution revealed that the S-NO state at Cys-215 had no discernible irreversibly oxidized forms, whereas other Cys residues remained in their free thiol states. We further demonstrated that S-nitrosylation of the Cys-215 residue protected PTP1B from subsequent H(2)O(2)-induced irreversible oxidation. Increasing the level of cellular NO by pretreating cells with an NO donor or by activating ectopically expressed NO synthase inhibited reactive oxygen species-induced irreversible oxidation of endogenous PTP1B. These findings suggest that S-nitrosylation might prevent PTPs from permanent inactivation caused by oxidative stress. | ||
- | + | Cysteine S-nitrosylation protects protein-tyrosine phosphatase 1B against oxidation-induced permanent inactivation.,Chen YY, Chu HM, Pan KT, Teng CH, Wang DL, Wang AH, Khoo KH, Meng TC J Biol Chem. 2008 Dec 12;283(50):35265-72. Epub 2008 Oct 7. PMID:18840608<ref>PMID:18840608</ref> | |
+ | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
+ | </div> | ||
+ | <div class="pdbe-citations 3eu0" style="background-color:#fffaf0;"></div> | ||
- | + | ==See Also== | |
- | + | *[[Tyrosine phosphatase 3D structures|Tyrosine phosphatase 3D structures]] | |
- | + | == References == | |
- | + | <references/> | |
- | + | __TOC__ | |
- | + | </StructureSection> | |
- | == | + | |
- | + | ||
- | + | ||
- | == | + | |
- | < | + | |
[[Category: Homo sapiens]] | [[Category: Homo sapiens]] | ||
- | [[Category: | + | [[Category: Large Structures]] |
- | [[Category: Chen | + | [[Category: Chen YY]] |
- | [[Category: Chu | + | [[Category: Chu HM]] |
- | [[Category: Khoo | + | [[Category: Khoo KH]] |
- | [[Category: Meng | + | [[Category: Meng TC]] |
- | [[Category: Pan | + | [[Category: Pan KT]] |
- | [[Category: Wang | + | [[Category: Wang AHJ]] |
- | [[Category: Wang | + | [[Category: Wang DL]] |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + |
Current revision
Crystal structure of the S-nitrosylated Cys215 of PTP1B
|
Categories: Homo sapiens | Large Structures | Chen YY | Chu HM | Khoo KH | Meng TC | Pan KT | Wang AHJ | Wang DL