1adn
From Proteopedia
(Difference between revisions)
(12 intermediate revisions not shown.) | |||
Line 1: | Line 1: | ||
- | {{Seed}} | ||
- | [[Image:1adn.png|left|200px]] | ||
- | < | + | ==SOLUTION STRUCTURE OF THE DNA METHYLPHOSPHOTRIESTER REPAIR DOMAIN OF ESCHERICHIA COLI ADA== |
- | + | <StructureSection load='1adn' size='340' side='right'caption='[[1adn]]' scene=''> | |
- | + | == Structural highlights == | |
- | + | <table><tr><td colspan='2'>[[1adn]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_coli Escherichia coli]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1ADN OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1ADN FirstGlance]. <br> | |
- | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Solution NMR</td></tr> | |
- | - | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr> |
- | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1adn FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1adn OCA], [https://pdbe.org/1adn PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1adn RCSB], [https://www.ebi.ac.uk/pdbsum/1adn PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1adn ProSAT]</span></td></tr> | |
+ | </table> | ||
+ | == Function == | ||
+ | [https://www.uniprot.org/uniprot/ADA_ECOLI ADA_ECOLI] Is involved in the adaptive response to alkylation damage in DNA caused by alkylating agents. Repairs O6-methylguanine and 04-methylthymine residues in alkylated DNA by a direct and irreversible transfer of the methyl group from the base to one of its own cysteine residues (Cys-321). Also specifically repairs the Sp diastereomer of DNA methylphosphotriester lesions by the same mechanism, although the methyl transfer occurs onto a different cysteine residue (Cys-38). Can not demethylate the other diastereomer, Rp-methylphosphotriester.<ref>PMID:2987862</ref> The methylation of Ada by methylphosphotriesters in DNA leads to its activation as a transcriptional regulator that activates the transcription of its own gene, ada, and other alkylation resistance genes, alkA, alkB and aidB.<ref>PMID:2987862</ref> | ||
+ | == Evolutionary Conservation == | ||
+ | [[Image:Consurf_key_small.gif|200px|right]] | ||
+ | Check<jmol> | ||
+ | <jmolCheckbox> | ||
+ | <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/ad/1adn_consurf.spt"</scriptWhenChecked> | ||
+ | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | ||
+ | <text>to colour the structure by Evolutionary Conservation</text> | ||
+ | </jmolCheckbox> | ||
+ | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1adn ConSurf]. | ||
+ | <div style="clear:both"></div> | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | The Escherichia coli Ada protein repairs methyl phosphotriesters in DNA by direct, irreversible methyl transfer to one of its own cysteine residues. The methyl-transfer process appears to be autocatalyzed by coordination of the acceptor residue, Cys-69, to a tightly bound zinc ion. Upon methyl transfer, Ada acquires the ability to bind DNA sequence-specifically and thereby to induce genes that confer resistance to methylating agents. The solution structure of an N-terminal 10-kDa fragment of Ada, which retains zinc binding and DNA methyl phosphotriester repair activities, was determined using multidimensional heteronuclear nuclear magnetic resonance techniques. The structure reveals a zinc-binding motif unlike any observed thus far in transcription factors or zinc-containing enzymes and provides insight into the mechanism of metalloactivated DNA repair. | ||
- | + | Solution structure of the DNA methyl phosphotriester repair domain of Escherichia coli Ada.,Myers LC, Verdine GL, Wagner G Biochemistry. 1993 Dec 28;32(51):14089-94. PMID:8260490<ref>PMID:8260490</ref> | |
- | + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |
- | + | </div> | |
- | + | <div class="pdbe-citations 1adn" style="background-color:#fffaf0;"></div> | |
- | + | == References == | |
- | + | <references/> | |
- | + | __TOC__ | |
- | + | </StructureSection> | |
- | == | + | |
- | + | ||
- | + | ||
- | == | + | |
- | < | + | |
[[Category: Escherichia coli]] | [[Category: Escherichia coli]] | ||
- | [[Category: | + | [[Category: Large Structures]] |
- | [[Category: | + | [[Category: Myers LC]] |
- | [[Category: | + | [[Category: Verdine GL]] |
- | [[Category: | + | [[Category: Wagner G]] |
- | + | ||
- | + |
Current revision
SOLUTION STRUCTURE OF THE DNA METHYLPHOSPHOTRIESTER REPAIR DOMAIN OF ESCHERICHIA COLI ADA
|