1q9s
From Proteopedia
(Difference between revisions)
(8 intermediate revisions not shown.) | |||
Line 1: | Line 1: | ||
- | {{Seed}} | ||
- | [[Image:1q9s.png|left|200px]] | ||
- | < | + | ==Crystal structure of riboflavin kinase with ternary product complex== |
- | + | <StructureSection load='1q9s' size='340' side='right'caption='[[1q9s]], [[Resolution|resolution]] 2.42Å' scene=''> | |
- | You may | + | == Structural highlights == |
- | + | <table><tr><td colspan='2'>[[1q9s]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1Q9S OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1Q9S FirstGlance]. <br> | |
- | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.42Å</td></tr> | |
- | -- | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ADP:ADENOSINE-5-DIPHOSPHATE'>ADP</scene>, <scene name='pdbligand=FMN:FLAVIN+MONONUCLEOTIDE'>FMN</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr> |
- | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1q9s FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1q9s OCA], [https://pdbe.org/1q9s PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1q9s RCSB], [https://www.ebi.ac.uk/pdbsum/1q9s PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1q9s ProSAT]</span></td></tr> | |
+ | </table> | ||
+ | == Function == | ||
+ | [https://www.uniprot.org/uniprot/RIFK_HUMAN RIFK_HUMAN] Catalyzes the phosphorylation of riboflavin (vitamin B2) to form flavin-mononucleotide (FMN), hence rate-limiting enzyme in the synthesis of FAD. Essential for TNF-induced reactive oxygen species (ROS) production. Through its interaction with both TNFRSF1A and CYBA, physically and functionally couples TNFRSF1A to NADPH oxidase. TNF-activation of RFK may enhance the incorporation of FAD in NADPH oxidase, a critical step for the assembly and activation of NADPH oxidase. | ||
+ | == Evolutionary Conservation == | ||
+ | [[Image:Consurf_key_small.gif|200px|right]] | ||
+ | Check<jmol> | ||
+ | <jmolCheckbox> | ||
+ | <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/q9/1q9s_consurf.spt"</scriptWhenChecked> | ||
+ | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked> | ||
+ | <text>to colour the structure by Evolutionary Conservation</text> | ||
+ | </jmolCheckbox> | ||
+ | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1q9s ConSurf]. | ||
+ | <div style="clear:both"></div> | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | Riboflavin kinase (RFK) is an essential enzyme catalyzing the phosphorylation of riboflavin (vitamin B(2)) in the presence of ATP and Mg(2+) to form the active cofactor FMN, which can be further converted to FAD. Previously, the crystal structures of RFKs from human and Schizosaccharomyces pombe have been determined in the apo form and in complex with MgADP. These structures revealed that RFK adopts a novel kinase fold and utilizes a unique nucleotide binding site. The structures of the flavin-bound RFK obtained by soaking pre-existing crystals were also reported. Because of crystal packing restraints, these flavin-bound RFK complexes adopt conformations nearly identical with that of corresponding flavin-free structures. Here we report the structure of human RFK cocrystallized with both MgADP and FMN. Drastic conformational changes associated with flavin binding are observed primarily at the so-called Flap I and Flap II loop regions. As a result, the bound FMN molecule now interacts with the enzyme extensively and is well-ordered. Residues from Flap II interact with Flap I and shield the FMN molecule from the solvent. The conformational changes in Flap I resulted in a new Mg(2+) coordination pattern in which a FMN phosphate oxygen and Asn36 side chain carbonyl are directly coordinating to the Mg(2+) ion. The proposed catalytic base Glu86 is well-positioned for activation of the O5' hydroxyl group of riboflavin for the phosphoryl transfer reaction. The structural data obtained so far on human and yeast RFK complexes provide a rationale for the ordered kinetic mechanism of RFK. | ||
- | + | Ligand binding-induced conformational changes in riboflavin kinase: structural basis for the ordered mechanism.,Karthikeyan S, Zhou Q, Osterman AL, Zhang H Biochemistry. 2003 Nov 4;42(43):12532-8. PMID:14580199<ref>PMID:14580199</ref> | |
- | + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |
- | + | </div> | |
- | + | <div class="pdbe-citations 1q9s" style="background-color:#fffaf0;"></div> | |
- | + | == References == | |
- | + | <references/> | |
- | + | __TOC__ | |
- | + | </StructureSection> | |
- | == | + | |
- | + | ||
- | + | ||
- | == | + | |
- | < | + | |
[[Category: Homo sapiens]] | [[Category: Homo sapiens]] | ||
- | [[Category: | + | [[Category: Large Structures]] |
- | [[Category: Karthikeyan | + | [[Category: Karthikeyan S]] |
- | [[Category: Osterman | + | [[Category: Osterman AL]] |
- | [[Category: Zhang | + | [[Category: Zhang H]] |
- | [[Category: Zhou | + | [[Category: Zhou Q]] |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + |
Current revision
Crystal structure of riboflavin kinase with ternary product complex
|