1l56

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Current revision (22:06, 26 March 2025) (edit) (undo)
 
(10 intermediate revisions not shown.)
Line 1: Line 1:
-
{{Seed}}
 
-
[[Image:1l56.png|left|200px]]
 
-
<!--
+
==ANALYSIS OF THE INTERACTION BETWEEN CHARGED SIDE CHAINS AND THE ALPHA-HELIX DIPOLE USING DESIGNED THERMOSTABLE MUTANTS OF PHAGE T4 LYSOZYME==
-
The line below this paragraph, containing "STRUCTURE_1l56", creates the "Structure Box" on the page.
+
<StructureSection load='1l56' size='340' side='right'caption='[[1l56]], [[Resolution|resolution]] 1.80&Aring;' scene=''>
-
You may change the PDB parameter (which sets the PDB file loaded into the applet)
+
== Structural highlights ==
-
or the SCENE parameter (which sets the initial scene displayed when the page is loaded),
+
<table><tr><td colspan='2'>[[1l56]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_virus_T4 Escherichia virus T4]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1L56 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1L56 FirstGlance]. <br>
-
or leave the SCENE parameter empty for the default display.
+
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.8&#8491;</td></tr>
-
-->
+
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=BME:BETA-MERCAPTOETHANOL'>BME</scene></td></tr>
-
{{STRUCTURE_1l56| PDB=1l56 | SCENE= }}
+
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1l56 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1l56 OCA], [https://pdbe.org/1l56 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1l56 RCSB], [https://www.ebi.ac.uk/pdbsum/1l56 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1l56 ProSAT]</span></td></tr>
 +
</table>
 +
== Function ==
 +
[https://www.uniprot.org/uniprot/ENLYS_BPT4 ENLYS_BPT4] Endolysin with lysozyme activity that degrades host peptidoglycans and participates with the holin and spanin proteins in the sequential events which lead to the programmed host cell lysis releasing the mature viral particles. Once the holin has permeabilized the host cell membrane, the endolysin can reach the periplasm and break down the peptidoglycan layer.<ref>PMID:22389108</ref>
 +
== Evolutionary Conservation ==
 +
[[Image:Consurf_key_small.gif|200px|right]]
 +
Check<jmol>
 +
<jmolCheckbox>
 +
<scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/l5/1l56_consurf.spt"</scriptWhenChecked>
 +
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked>
 +
<text>to colour the structure by Evolutionary Conservation</text>
 +
</jmolCheckbox>
 +
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1l56 ConSurf].
 +
<div style="clear:both"></div>
 +
<div style="background-color:#fffaf0;">
 +
== Publication Abstract from PubMed ==
 +
It was previously shown that the two replacements Gly 77--&gt;Ala (G77A) and Ala 82--&gt;Pro (A82P) increase the thermostability of phage T4 lysozyme at pH 6.5. Such replacements are presumed to restrict the degrees of freedom of the unfolded protein and so decrease the entropy of unfolding [B. W. Matthews, H. Nicholson, and W. J. Becktel (1987) Proceedings of the National Academy of Science USA Vol. 84, pp. 6663-6667]. To further test this approach, three additional replacements--G113A, K60P and A93P--have been constructed. On the basis of model building, each of these three replacements was judged to be less than optimal because it would tend to introduce unfavorable van der Waals contacts with neighboring parts of the protein. The presence of such contacts was verified for G113A and K60P by conformational adjustments seen in the crystal structures of these mutant proteins. In the case of G113A there are backbone conformational changes of 0.5-1.0 A in the short alpha-helix, 108-113, that includes the site of substitution. In the case of K60P the pyrrolidine ring shows evidence of strain. The thermal stability of each of the three variants at both pH 2.0 and pH 6.5 was found to be very close to that of wild-type lysozyme. The results suggest that the procedure used to predict sites for both Xaa--&gt;Pro and Gly--&gt;Ala is, in principle, correct. At the same time, the increase in stability expected from substitutions of this type is modest, and can easily be offset by strain associated with introduction of the alanine or proline. This means that the criteria used to select substitutions that will increase thermostability have to be stringent at least. In the case of T4 lysozyme this severely limits the number of sites. The analysis reveals a significant discrepancy between the conformational energy surface predicted for the residue preceding a proline and the conformations observed in crystal structures.
-
===ANALYSIS OF THE INTERACTION BETWEEN CHARGED SIDE CHAINS AND THE ALPHA-HELIX DIPOLE USING DESIGNED THERMOSTABLE MUTANTS OF PHAGE T4 LYSOZYME===
+
Analysis of the effectiveness of proline substitutions and glycine replacements in increasing the stability of phage T4 lysozyme.,Nicholson H, Tronrud DE, Becktel WJ, Matthews BW Biopolymers. 1992 Nov;32(11):1431-41. PMID:1457724<ref>PMID:1457724</ref>
 +
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 +
</div>
 +
<div class="pdbe-citations 1l56" style="background-color:#fffaf0;"></div>
-
<!--
+
==See Also==
-
The line below this paragraph, {{ABSTRACT_PUBMED_1457724}}, adds the Publication Abstract to the page
+
*[[Lysozyme 3D structures|Lysozyme 3D structures]]
-
(as it appears on PubMed at http://www.pubmed.gov), where 1457724 is the PubMed ID number.
+
== References ==
-
-->
+
<references/>
-
{{ABSTRACT_PUBMED_1457724}}
+
__TOC__
-
 
+
</StructureSection>
-
==About this Structure==
+
[[Category: Escherichia virus T4]]
-
1L56 is a 1 chain structure of sequence from [http://en.wikipedia.org/wiki/Enterobacteria_phage_t4 Enterobacteria phage t4]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1L56 OCA].
+
[[Category: Large Structures]]
-
 
+
[[Category: Matthews BW]]
-
==Reference==
+
[[Category: Nicholson H]]
-
<ref group="xtra">PMID:1457724</ref><references group="xtra"/>
+
-
[[Category: Enterobacteria phage t4]]
+
-
[[Category: Lysozyme]]
+
-
[[Category: Matthews, B W.]]
+
-
[[Category: Nicholson, H.]]
+
-
 
+
-
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Wed Feb 18 09:03:28 2009''
+

Current revision

ANALYSIS OF THE INTERACTION BETWEEN CHARGED SIDE CHAINS AND THE ALPHA-HELIX DIPOLE USING DESIGNED THERMOSTABLE MUTANTS OF PHAGE T4 LYSOZYME

PDB ID 1l56

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools