3gfs

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
(New page: '''Unreleased structure''' The entry 3gfs is ON HOLD Authors: Staunig, N., Gruber, K. Description: Structure of YhdA, K109D/D137K variant ''Page seeded by [http://oca.weizmann.ac.il/o...)
Current revision (07:05, 6 September 2023) (edit) (undo)
 
(9 intermediate revisions not shown.)
Line 1: Line 1:
-
'''Unreleased structure'''
 
-
The entry 3gfs is ON HOLD
+
==Structure of YhdA, K109D/D137K variant==
 +
<StructureSection load='3gfs' size='340' side='right'caption='[[3gfs]], [[Resolution|resolution]] 2.10&Aring;' scene=''>
 +
== Structural highlights ==
 +
<table><tr><td colspan='2'>[[3gfs]] is a 12 chain structure with sequence from [https://en.wikipedia.org/wiki/Bacillus_subtilis Bacillus subtilis]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3GFS OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3GFS FirstGlance]. <br>
 +
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.105&#8491;</td></tr>
 +
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=FMN:FLAVIN+MONONUCLEOTIDE'>FMN</scene></td></tr>
 +
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3gfs FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3gfs OCA], [https://pdbe.org/3gfs PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3gfs RCSB], [https://www.ebi.ac.uk/pdbsum/3gfs PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3gfs ProSAT]</span></td></tr>
 +
</table>
 +
== Function ==
 +
[https://www.uniprot.org/uniprot/AZR_BACSU AZR_BACSU] Catalyzes the reductive cleavage of azo bond in aromatic azo compounds to the corresponding amines. Requires NADPH, but not NADH, as an electron donor for its activity.<ref>PMID:16752898</ref> <ref>PMID:16861800</ref>
 +
== Evolutionary Conservation ==
 +
[[Image:Consurf_key_small.gif|200px|right]]
 +
Check<jmol>
 +
<jmolCheckbox>
 +
<scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/gf/3gfs_consurf.spt"</scriptWhenChecked>
 +
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
 +
<text>to colour the structure by Evolutionary Conservation</text>
 +
</jmolCheckbox>
 +
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=3gfs ConSurf].
 +
<div style="clear:both"></div>
 +
<div style="background-color:#fffaf0;">
 +
== Publication Abstract from PubMed ==
 +
YhdA, a thermostable NADPH:FMN oxidoreductase from Bacillus subtilis, reduces quinones via a ping-pong bi-bi mechanism with a pronounced preference for NADPH. The enzyme occurs as a stable tetramer in solution. The two extended dimer surfaces are packed against each other by a 90 rotation of one dimer with respect to the other. This assembly is stabilized by the formation of four salt bridges between K109 and D137 of the neighbouring protomers. To investigate the importance of the ion pair contacts, the K109L and D137L single replacement variants, as well as the K109L/D137L and K109D/D137K double replacement variants, were generated, expressed, purified, crystallized and biochemically characterized. The K109L and D137L variants form dimers instead of tetramers, whereas the K109L/D137L and K109D/D137K variants appear to exist in a dimer-tetramer equilibrium in solution. The crystal structures of the K109L and D137L variants confirm the dimeric state, with the K109L/D137L and K109D/D137K variants adopting a tetrameric assembly. Interestingly, all protein variants show a drastically reduced quinone reductase activity in steady-state kinetics. Detailed analysis of the two half reactions revealed that the oxidative half reaction is not affected, whereas reduction of the bound FMN cofactor by NADPH is virtually abolished. Inspection of the crystal structures indicates that the side chain of K109 plays a dual role by forming a salt bridge to D137, as well as stabilizing a glycine-rich loop in the vicinity of the FMN cofactor. In all protein variants, this glycine-rich loop exhibits a much higher mobility, compared to the wild-type. This appears to be incompatible with NADPH binding and thus leads to abrogation of flavin reduction.
-
Authors: Staunig, N., Gruber, K.
+
A single intersubunit salt bridge affects oligomerization and catalytic activity in a bacterial quinone reductase.,Binter A, Staunig N, Jelesarov I, Lohner K, Palfey BA, Deller S, Gruber K, Macheroux P FEBS J. 2009 Sep;276(18):5263-74. Epub 2009 Aug 13. PMID:19682074<ref>PMID:19682074</ref>
-
Description: Structure of YhdA, K109D/D137K variant
+
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
-
 
+
</div>
-
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Sun Mar 22 10:24:38 2009''
+
<div class="pdbe-citations 3gfs" style="background-color:#fffaf0;"></div>
 +
== References ==
 +
<references/>
 +
__TOC__
 +
</StructureSection>
 +
[[Category: Bacillus subtilis]]
 +
[[Category: Large Structures]]
 +
[[Category: Gruber K]]
 +
[[Category: Staunig N]]

Current revision

Structure of YhdA, K109D/D137K variant

PDB ID 3gfs

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools