User:Yana Fedotova/Sandbox 1
From Proteopedia
(51 intermediate revisions not shown.) | |||
Line 1: | Line 1: | ||
- | = Photosynthesis Response Regulator | + | '' |
+ | = Photosynthesis Response Regulator PrrA of ''Rhodobacter sphaeroides'' = | ||
+ | '' | ||
+ | '' | ||
+ | == Background Information == | ||
+ | '' | ||
+ | PrrA of ''Rhodobacter sphaeroides'' is the DNA binding protein partner of the redox-responsive two-component signal transduction regulatory system, PrrBA. PrrA regulates genes required for carbon dioxide and nitrogen fixations, photosynthesis and proton oxidation and uptake<ref> Eraso, J. M., J. H. Roh, X. Zeng, S. J. Callister, M. S. Lipton and S. Kaplan. 2008. Role of Global Transcriptional Regulator PrrA in ''Rhodobacter sphaeroides'' 2.4.1: Combined Transcriptome and Proteome Analysis. Journal of Bacteriology 190: 4831-4848.</ref>. | ||
+ | PrrB is an integral membrane sensor histidine kinase that can phosphorylate PrrA when it senses changes in redox, such as can occur when oxygen tension change. Based on transciptome profiling, of the 4,284 genes represented in ''R. sphaeroides'' 2.4.1 GeneChip, PrrA apparently regulates 1,057<ref> Eraso, J. M. and S. Kaplan. 1994. ''prrA'', a Putative Response Regulator Involved in Oxygen Regulation of Photosynthesis Gene Expression in ''Rhodobacter sphaeroides''. Journal of Bacteriology 176:32-43.</ref>. | ||
- | =Background Information= | ||
- | PrrA is a DNA binding protein and a essential part of the two-component signal transduction regulatory system, PrrBA. ''Rhodobacter capsulatus'' contains RegA considered a homologue to PrrA protein in ''R. sphaeroides''. PrrA is proposed to be a master regulator/response regulator involved in oxygen regulation of photosynthesis genes expression responding to changes to the rate of electron flow as means to maintain redox balance, such as a balance between energy production and energy consumption in the cell (4). PrrA is thought to play an important function in carbon dioxide and nitrogen fixations, photosynthesis as well as proton oxidation and uptake (1). | ||
- | PrrB is considered a sensor histidine kinase bound to the cytoplasmic membrane that can phosphorylate PrrA when it senses changes the aforementioned changes in the cell. Interestingly, “1,058 genes were proposed to be regulated out of 4,284 genes as represented on the GeneChip of ''R. sphaeroides'' 2.4.1” by PrrA (2). | ||
'' | '' | ||
== Structure of the Proposed PrrA Protein == | == Structure of the Proposed PrrA Protein == | ||
- | ''<applet load='PrrA.pdb' size='300' color=' | + | '' |
- | + | ||
+ | <applet load='PrrA.pdb' size='300' color='black' frame='true' align='right' caption='3D Proposed Image of PrrA Protein'/> http://ca.expasy.org/tools/protparam.html | ||
+ | |||
+ | *This is the <scene name='User:Yana_Fedotova/Sandbox_1/Prra/4'>Amino to Carboxyl rainbow</scene> of the protein. | ||
+ | {{Template:ColorKey_Amino2CarboxyRainbow}} | ||
+ | |||
+ | *The highlighted <scene name='User:Yana_Fedotova/Sandbox_1/Prra/3'>hydrophobic regions</scene> of the protein. | ||
+ | |||
+ | *The <scene name='User:Yana_Fedotova/Sandbox_1/Prra/2'>highlighted Glycine and Proline residues</scene> of the protein. | ||
+ | |||
+ | |||
+ | The PrrA protein is predicted to consist of a N-terminal receiver domain, extending from 1-130 amino acids, and a C-terminal domain covering approximately from 141-184 amino acids (residues 139-183 are ca. 90% conserved within the protein family<ref> Masuda,S., Matsumoto,Y., Nagashima,K.V., Shimada,K., Inoue,K., Bauer,C.E. and Matsuura,K. 1999. Structural and Functional Analyses of Photosynthetic Regulatory Genes ''regA'' and ''regB'' from ''Rhodovulum sulfidophilum'', ''Roseobacter denitrificans'' and ''Rhodobacter capsulatus''. Journal of Bacteriology 181, 4205-4215.</ref>). It is also suggested that the C-terminal domain contains a helix-turn-helix (HTH) DNA-binding motif from 159-179 amino acids (100% conserved within the family via sequence analysis<ref> Masuda,S., Matsumoto,Y., Nagashima,K.V., Shimada,K., Inoue,K., Bauer,C.E. and Matsuura,K. 1999. Structural and Functional Analyses of Photosynthetic Regulatory Genes ''regA'' and ''regB'' from ''Rhodovulum sulfidophilum'', ''Roseobacter denitrificans’’ and ''Rhodobacter capsulatus''. Journal of Bacteriology 181, 4205-4215.</ref>). The two domains are said to be connected via a short proline-rich linker<ref> Laguri, C., M. K. Phillips-Jones, and M. P. Williamson. 2004. Solution Structure and DNA Binding of the Effector Domain from the Global Regulator PrrA (RegA) from ''Rhodobacter sphaeroides'': Insights into DNA Binding Specificity. Journal of Bacteriology 176:32-43.</ref>. | ||
+ | |||
+ | '' | ||
+ | == Physico-Chemical Properties of PrrA == | ||
+ | '' | ||
Molecular weight: 20483.5 Da | Molecular weight: 20483.5 Da | ||
Line 14: | Line 33: | ||
Theoretical pI: 6.85 | Theoretical pI: 6.85 | ||
- | |||
- | Estimated half-life: | ||
- | |||
- | The N-terminal of the sequence considered is M (Met). | ||
The estimated half-life is: | The estimated half-life is: | ||
- | + | 30 hours (mammalian reticulocytes, in vitro). | |
- | + | >20 hours (yeast, in vivo). | |
- | + | >10 hours (Escherichia coli, in vivo). | |
Total number of negatively charged residues (Asp + Glu): 28 | Total number of negatively charged residues (Asp + Glu): 28 | ||
Line 28: | Line 43: | ||
Total number of positively charged residues (Arg + Lys): 28 | Total number of positively charged residues (Arg + Lys): 28 | ||
- | Atomic | + | '' |
+ | == Atomic Composition == | ||
+ | '' | ||
+ | |||
Carbon C 894 | Carbon C 894 | ||
Hydrogen H 1468 | Hydrogen H 1468 | ||
Line 36: | Line 54: | ||
Total number of atoms: 2905 | Total number of atoms: 2905 | ||
- | |||
- | Extinction coefficients: | ||
Extinction coefficients are in units of M-1 cm-1, at 280 nm measured in water. | Extinction coefficients are in units of M-1 cm-1, at 280 nm measured in water. | ||
Line 48: | Line 64: | ||
Abs 0.1% (=1 g/l) 0.559, assuming NO Cys residues appear as half cystines | Abs 0.1% (=1 g/l) 0.559, assuming NO Cys residues appear as half cystines | ||
- | |||
Instability index: 55.68 | Instability index: 55.68 | ||
Line 55: | Line 70: | ||
Grand Average of Hydropathicity (GRAVY): -0.311 | Grand Average of Hydropathicity (GRAVY): -0.311 | ||
+ | |||
+ | '' | ||
+ | == Secondary Structure Composition of PrrA == | ||
+ | '' | ||
Alpha-helices: 34.78% | Alpha-helices: 34.78% | ||
Line 62: | Line 81: | ||
Other (Loops): 44.57% | Other (Loops): 44.57% | ||
- | =Amino Acid Sequence | + | '' |
+ | == The Full-Length '' R. sphaeroides '' PrrA Amino Acid Sequence (184 Residues) == | ||
+ | '' | ||
1 maedlvfelg adrslllvdd depflkrlak amekrgfvle taqsvaegka iaqarppaya | 1 maedlvfelg adrslllvdd depflkrlak amekrgfvle taqsvaegka iaqarppaya | ||
+ | |||
61 vvdlrledgn gldvvevlre rrpdcrivvl tgygaiatav aavkigatdy lskpadanev | 61 vvdlrledgn gldvvevlre rrpdcrivvl tgygaiatav aavkigatdy lskpadanev | ||
+ | |||
121 thallakges lppppenpms adrvrwehiq riyemcdrnv setarrlnmh rrtlqrilak | 121 thallakges lppppenpms adrvrwehiq riyemcdrnv setarrlnmh rrtlqrilak | ||
+ | |||
181 rspr | 181 rspr | ||
Line 141: | Line 165: | ||
|} | |} | ||
- | =Evolution of PrrA= | ||
+ | '' | ||
+ | == 1umq == | ||
+ | '' | ||
+ | |||
+ | 1umq is an engineered chain structure fragment sequence of the DNA binding domain of PrrA with residues from 125 to 184 from ''R. sphaeroides''. The cited article investigated the C-terminal effector domain of PrrA by NMR, which was said to consist of a three-helix bundle with a helix-turn-helix DNA binding motif. | ||
+ | |||
+ | http://proteopedia.org/wiki/index.php/1umq | ||
+ | |||
+ | '' | ||
+ | == Phylogenetic Tree of PrrA == | ||
+ | '' | ||
+ | |||
+ | http://consurf.tau.ac.il/results/1240259643/treeView.html | ||
+ | |||
+ | '' | ||
+ | == Evolution of PrrA == | ||
+ | '' | ||
[[Image:PrrA.png|left|200px]] | [[Image:PrrA.png|left|200px]] | ||
Line 167: | Line 207: | ||
- RESIDUE VARIETY: The residues variety at each position of the multiple sequence alignment. | - RESIDUE VARIETY: The residues variety at each position of the multiple sequence alignment. | ||
- | POS SEQ 3LATOM SCORE COLOR CONFIDENCE INTERVAL CONFIDENCE INTERVAL COLORS MSA DATA RESIDUE VARIETY | ||
- | (normalized) | ||
- | 1 D ASP12: -0.486 7 -0.925,-0.243 8,6 9/50 D,N,R | ||
- | 2 R ARG13: 0.275 4 -0.243, 0.523 6,3 13/50 K,P,Q,R,Y | ||
- | 3 S SER14: -0.632 7 -0.925,-0.412 8,6 17/50 K,N,S,T | ||
- | 4 L LEU15: -0.678 7 -0.925,-0.559 8,7 41/50 A,I,L,V | ||
- | 5 L LEU16: -1.003 8 -1.234,-0.813 9,8 41/50 A,F,H,L | ||
- | 6 L LEU17: -0.158 5 -0.412,-0.044 6,5 47/50 I,L,V | ||
- | 7 V VAL18: -1.013 8 -1.134,-0.925 9,8 47/50 A,I,L,V | ||
- | 8 D ASP19: -1.191 9 -1.337,-1.134 9,9 47/50 D,E | ||
- | 9 D ASP20: -1.421 9 -1.455,-1.455 9,9 47/50 D | ||
- | 10 D ASP21: -0.714 7 -0.925,-0.559 8,7 47/50 D,E,N | ||
- | 11 E GLU22: 2.102 1 2.258, 2.258 1,1 47/50 A,D,E,I,K,N,P,Q,R,S,T,V | ||
- | 12 P PRO23: 0.507 3 0.201, 1.009 4,2 47/50 A,D,E,G,K,L,N,P,S | ||
- | 13 F PHE24: -0.580 7 -0.813,-0.412 8,6 47/50 F,H,I,L,T,V | ||
- | 14 L LEU25: -0.433 6 -0.692,-0.243 7,6 47/50 A,C,G,L,R,S,V | ||
- | 15 K LYS26: 1.480 1 1.009, 2.258 2,1 47/50 D,E,G,H,K,N,Q,R,T,W | ||
- | 16 R ARG27: 1.029 2 0.523, 1.009 3,2 47/50 A,F,G,I,L,M,R,S,T,V,W,Y | ||
- | 17 L LEU28: -0.541 7 -0.813,-0.412 8,6 47/50 F,I,L,M,T,V | ||
- | 18 A ALA29: 0.933 2 0.523, 1.009 3,2 47/50 A,E,G,I,N,Q,R,S,T | ||
- | 19 K LYS30: 1.705 1 1.009, 2.258 2,1 47/50 A,F,G,I,K,L,Q,R,T,V,Y | ||
- | 20 A ALA31: -0.159 6 -0.412,-0.044 6,5 47/50 A,C,G,I,L,M,N,R,S,T | ||
- | 21 M MET32: -0.961 8 -1.134,-0.813 9,8 47/50 A,F,I,L,M | ||
- | 22 E GLU33: 0.254 4 -0.044, 0.523 5,3 47/50 A,E,G,K,Q,R,S,T,V | ||
- | 23 K LYS34: 2.007 1 2.258, 2.258 1,1 47/50 A,D,E,F,G,K,L,M,Q,R,S,T | ||
- | 24 R ARG35: 0.749 3 0.201, 1.009 4,2 47/50 A,D,E,L,M,N,Q,R,S,W | ||
- | 25 G GLY36: -1.275 9 -1.455,-1.234 9,9 47/50 G,K | ||
- | 26 F PHE37: 0.226 4 -0.044, 0.523 5,3 47/50 F,H,L,M,Y | ||
- | 27 V VAL38: 1.276 1 0.523, 2.258 3,1 47/50 A,D,E,K,L,N,Q,R,S,T,V | ||
- | 28 L LEU39: -0.651 7 -0.813,-0.412 8,6 47/50 A,C,L,P,T,V | ||
- | 29 E GLU40: 1.033 2 0.523, 1.009 3,2 47/50 A,D,E,F,H,I,K,L,R,S,T,V,Y | ||
- | 30 T THR41: 1.772 1 1.009, 2.258 2,1 47/50 A,C,E,H,I,L,M,Q,S,T,V,W | ||
- | 31 A ALA42: -0.654 7 -0.813,-0.559 8,7 47/50 A,F,H,T,V,Y | ||
- | 32 Q GLN43: 2.160 1 2.258, 2.258 1,1 47/50 A,D,E,F,G,H,N,Q,R,S,T,Y | ||
- | 33 S SER44: -0.228 6 -0.412,-0.044 6,5 47/50 D,G,H,L,N,S,T | ||
- | 34 V VAL45: -0.378 6 -0.692,-0.243 7,6 46/50 A,G,L,S,T,V | ||
- | 35 A ALA46: 2.116 1 2.258, 2.258 1,1 47/50 A,D,E,H,K,L,N,P,Q,R,S,T,V | ||
- | 36 E GLU47: 1.145 1 0.523, 2.258 3,1 47/50 A,D,E,G,M,N,Q,R,S,T | ||
- | 37 G GLY48: -0.725 7 -0.925,-0.559 8,7 47/50 A,F,G,L,V | ||
- | 38 K LYS49: 0.885 2 0.523, 1.009 3,2 47/50 D,E,H,I,K,L,M,R,V,W,Y | ||
- | 39 A ALA50: 2.079 1 2.258, 2.258 1,1 47/50 A,D,E,H,K,L,Q,R,T | ||
- | 40 I ILE51: 2.142 1 2.258, 2.258 1,1 47/50 A,D,E,F,G,I,K,L,M,Q,S,V,W | ||
- | 41 A ALA52: 1.233 1 0.523, 2.258 3,1 47/50 A,F,G,I,L,M,V | ||
- | 42 Q GLN53: 1.647 1 1.009, 2.258 2,1 47/50 A,E,H,I,K,L,M,N,P,Q,R,S,T,V | ||
- | 43 A ALA54: 0.986 2 0.523, 1.009 3,2 47/50 A,D,E,I,N,P,R,S,T | ||
- | 44 R ARG55: 1.930 1 2.258, 2.258 1,1 50/50 A,D,E,G,I,K,L,N,Q,R,V,Y | ||
- | 45 P PRO56: 2.213 1 2.258, 2.258 1,1 50/50 A,D,E,F,H,I,K,M,P,Q,R,T,V | ||
- | 46 P PRO57: 0.463 4 0.201, 1.009 4,2 50/50 A,F,G,N,P,R,V,Y | ||
- | 47 A ALA58: -0.631 7 -0.813,-0.412 8,6 50/50 A,D,G,H,K,N,Q,S | ||
- | 48 Y TYR59: -0.004 5 -0.243, 0.201 6,4 50/50 A,C,H,I,L,P,V,Y | ||
- | 49 A ALA60: -0.030 5 -0.243, 0.201 6,4 50/50 A,C,I,L,V | ||
- | 50 V VAL61: 0.210 4 -0.044, 0.523 5,3 50/50 F,I,L,V | ||
- | 51 V VAL62: -0.346 6 -0.559,-0.044 7,5 50/50 C,F,I,L,M,S,T,V | ||
- | 52 D ASP63: -1.423 9 -1.455,-1.455 9,9 50/50 D | ||
- | 53 L LEU64: -0.362 6 -0.559,-0.243 7,6 50/50 I,L,M,V,W | ||
- | 54 R ARG65: -0.682 7 -0.925,-0.559 8,7 50/50 G,K,M,N,R,T,V,W | ||
- | 55 L LEU66: -0.789 7 -0.925,-0.692 8,7 50/50 L,M | ||
- | 56 E GLU67: -0.694 7 -0.925,-0.559 8,7 50/50 A,D,E,G,P,S | ||
- | 57 D ASP68: 0.334 4 -0.044, 0.523 5,3 50/50 D,E,G,K,N,R | ||
- | 58 G GLY69: 0.102 5 -0.243, 0.523 6,3 50/50 D,E,G,I,K,L,M,T,V | ||
- | 59 N ASN70: -0.540 7 -0.692,-0.412 7,6 50/50 D,N,S,T | ||
- | 60 G GLY71: -1.297 9 -1.455,-1.234 9,9 50/50 A,G | ||
- | 61 L LEU72: -0.217 6 -0.559,-0.044 7,5 50/50 F,I,L,M,V,W | ||
- | 62 D ASP73: -0.002 5 -0.243, 0.201 6,4 50/50 A,D,E,G,H,K,Q,S | ||
- | 63 V VAL74: -0.427 6 -0.692,-0.243 7,6 50/50 A,F,I,L,T,V | ||
- | 64 V VAL75: 0.158 4 -0.243, 0.523 6,3 50/50 A,C,F,I,L,V | ||
- | 65 E GLU76: 0.207 4 -0.044, 0.523 5,3 50/50 A,D,E,H,K,P,Q,R,Y | ||
- | 66 V VAL77: 1.376 1 1.009, 2.258 2,1 50/50 A,D,E,I,K,M,N,Q,R,T,V,Y | ||
- | 67 L LEU78: -0.552 7 -0.813,-0.412 8,6 50/50 I,L,M,V,W | ||
- | 68 R ARG79: -0.539 7 -0.692,-0.412 7,6 50/50 G,K,L,N,Q,R | ||
- | 69 E GLU80: 1.449 1 1.009, 2.258 2,1 50/50 A,D,E,G,I,K,Q,R,S,V | ||
- | 70 R ARG81: 1.916 1 1.009, 2.258 2,1 50/50 A,D,E,H,I,K,L,M,N,Q,R,S,T,V,W | ||
- | 71 R ARG82: 1.282 1 1.009, 2.258 2,1 50/50 A,D,E,G,H,K,N,Q,R,S,Y | ||
- | 72 P PRO83: 0.133 5 -0.243, 0.523 6,3 45/50 A,D,I,K,L,P,Q,T,V,Y | ||
- | 73 D ASP84: 0.789 3 0.523, 1.009 3,2 50/50 A,D,E,G,H,L,M,N,Q,R,T,W | ||
- | 74 C CYS85: 0.574 3 0.201, 1.009 4,2 50/50 A,C,F,I,L,M,T,V | ||
- | 75 R ARG86: -0.924 8 -1.134,-0.813 9,8 50/50 A,K,P,R | ||
- | 76 I ILE87: -0.659 7 -0.813,-0.559 8,7 50/50 I,M,S,V | ||
- | 77 V VAL88: -0.565 7 -0.813,-0.412 8,6 50/50 A,I,L,M,V | ||
- | 78 V VAL89: -0.368 6 -0.559,-0.243 7,6 50/50 F,I,L,M,V | ||
- | 79 L LEU90: -0.765 7 -0.925,-0.559 8,7 50/50 I,L,M,V | ||
- | 80 T THR91: -1.242 9 -1.337,-1.134 9,9 50/50 S,T | ||
- | 81 G GLY92: -1.171 9 -1.337,-1.032 9,8 50/50 A,G,S | ||
- | 82 Y TYR93: -0.715 7 -0.925,-0.559 8,7 50/50 F,H,K,L,Q,R,S,Y | ||
- | 83 G GLY94: -0.342 6 -0.559,-0.044 7,5 50/50 A,D,G,N,S | ||
- | 84 A ALA95: 0.022 5 -0.243, 0.201 6,4 50/50 A,D,E,N,S,T | ||
- | 85 I ILE96: -0.472 6 -0.692,-0.243 7,6 50/50 E,F,I,L,V | ||
- | 86 A ALA97: 0.457 4 0.201, 1.009 4,2 50/50 A,D,E,F,I,M,P,S,T | ||
- | 87 T THR98: -0.835 8 -1.032,-0.692 8,7 50/50 A,D,E,H,L,M,N,T | ||
- | 88 A ALA99: -1.253 9 -1.337,-1.134 9,9 50/50 A,E,K,R | ||
- | 89 V VAL100: -1.099 8 -1.234,-1.032 9,8 50/50 I,L,V | ||
- | 90 A ALA101: 0.796 2 0.523, 1.009 3,2 50/50 A,D,E,F,I,K,L,N,Q,S | ||
- | 91 A ALA102: -1.232 9 -1.337,-1.134 9,9 50/50 A,G,T | ||
- | 92 V VAL103: -0.327 6 -0.559,-0.044 7,5 50/50 A,F,I,L,M,S,T,V,Y | ||
- | 93 K LYS104: -0.119 5 -0.412, 0.201 6,4 50/50 A,D,E,K,N,Q,R | ||
- | 94 I ILE105: 2.072 1 2.258, 2.258 1,1 50/50 A,C,D,G,H,I,K,L,M,Q,R,S,T,V | ||
- | 95 G GLY106: -1.382 9 -1.455,-1.337 9,9 50/50 G | ||
- | 96 A ALA107: -1.353 9 -1.455,-1.337 9,9 50/50 A,S,V | ||
- | 97 T THR108: -0.134 5 -0.412, 0.201 6,4 50/50 A,D,F,L,Q,T,V,Y | ||
- | 98 D ASP109: -1.303 9 -1.455,-1.234 9,9 50/50 D,E,S | ||
- | 99 Y TYR110: -0.709 7 -0.925,-0.559 8,7 50/50 F,Y | ||
- | 100 L LEU111: -0.714 7 -0.925,-0.559 8,7 50/50 I,L,M,V | ||
- | 101 S SER112: -0.199 6 -0.412,-0.044 6,5 50/50 A,C,E,I,P,S,T,V | ||
- | 102 K LYS113: -1.412 9 -1.455,-1.337 9,9 50/50 K | ||
- | 103 P PRO114: -1.394 9 -1.455,-1.337 9,9 50/50 P | ||
- | 104 A ALA115: -0.767 7 -1.032,-0.559 8,7 42/50 A,C,F,L,V | ||
- | 105 D ASP116: -0.564 7 -0.813,-0.412 8,6 42/50 A,D,E,G,H,N,S | ||
- | 106 A ALA117: 0.457 4 -0.044, 1.009 5,2 41/50 A,D,F,I,K,L,N,P,T | ||
- | 107 N ASN118: -0.387 6 -0.692,-0.243 7,6 41/50 A,D,E,G,K,N,R,T | ||
- | 108 E GLU119: -0.108 5 -0.412, 0.201 6,4 41/50 A,D,E,K,N,Q,R,V | ||
- | 109 V VAL120: -0.464 6 -0.692,-0.243 7,6 38/50 I,L,M,T,V | ||
- | 110 T THR121: 1.560 1 1.009, 2.258 2,1 23/50 A,D,I,L,N,Q,R,T,V,Y | ||
- | 111 H HIS122: -0.539 7 -0.813,-0.243 8,6 23/50 A,E,H,L,N,Q | ||
- | 112 A ALA123: -0.970 8 -1.134,-0.813 9,8 23/50 A,L,R,S,T | ||
- | 113 L LEU124: -0.153 5 -0.559, 0.201 7,4 19/50 I,L,V | ||
- | 114 L LEU125: 0.411 4 -0.044, 1.009 5,2 15/50 E,H,I,K,L,Q,R | ||
- | 115 A ALA126: -0.472 6 -0.813,-0.243 8,6 15/50 A,Q,R,S,T | ||
- | 116 K LYS127: 0.296 4 -0.412, 0.523 6,3 11/50 A,I,K,L,N,R,V | ||
- | 117 G GLY128: -0.161 6 -0.692, 0.201 7,4 8/50 G,L,S,V | ||
- | 118 E GLU129: -0.964 8 -1.234,-0.813 9,8 8/50 E,R | ||
- | 119 S SER130: -0.336 6 -0.813,-0.044 8,5 7/50 A,H,R,S | ||
- | 120 L LEU131: -0.401 6 -0.925,-0.044 8,5 7/50 G,L,S | ||
- | 121 P PRO132: 0.446 4* -0.243, 1.009 6,2 6/50 E,K,N,P | ||
- | + | POS SEQ COLOR RESIDUE VARIETY (Normalized) | |
- | + | 1 D 7 D,N,R | |
- | + | 2 R 4 K,P,Q,R,Y | |
- | + | 3 S 7 K,N,S,T | |
+ | 4 L 7 A,I,L,V | ||
+ | 5 L 8 A,F,H,L | ||
+ | 6 L 5 I,L,V | ||
+ | 7 V 8 A,I,L,V | ||
+ | 8 D 9 D,E | ||
+ | 9 D 9 D | ||
+ | 10 D 7 D,E,N | ||
+ | 11 E 1 A,D,E,I,K,N,P,Q,R,S,T,V | ||
+ | 12 P 3 A,D,E,G,K,L,N,P,S | ||
+ | 13 F 7 F,H,I,L,T,V | ||
+ | 14 L 6 A,C,G,L,R,S,V | ||
+ | 15 K 1 D,E,G,H,K,N,Q,R,T,W | ||
+ | 16 R 2 A,F,G,I,L,M,R,S,T,V,W,Y | ||
+ | 17 L 7 F,I,L,M,T,V | ||
+ | 18 A 2 A,E,G,I,N,Q,R,S,T | ||
+ | 19 K 1 A,F,G,I,K,L,Q,R,T,V,Y | ||
+ | 20 A 6 A,C,G,I,L,M,N,R,S,T | ||
+ | 21 M 8 A,F,I,L,M | ||
+ | 22 E 4 A,E,G,K,Q,R,S,T,V | ||
+ | 23 K 1 A,D,E,F,G,K,L,M,Q,R,S,T | ||
+ | 24 R 3 A,D,E,L,M,N,Q,R,S,W | ||
+ | 25 G 9 G,K | ||
+ | 26 F 4 F,H,L,M,Y | ||
+ | 27 V 1 A,D,E,K,L,N,Q,R,S,T,V | ||
+ | 28 L 7 A,C,L,P,T,V | ||
+ | 29 E 2 A,D,E,F,H,I,K,L,R,S,T,V,Y | ||
+ | 30 T 1 A,C,E,H,I,L,M,Q,S,T,V,W | ||
+ | 31 A 7 A,F,H,T,V,Y | ||
+ | 32 Q 1 A,D,E,F,G,H,N,Q,R,S,T,Y | ||
+ | 33 S 6 D,G,H,L,N,S,T | ||
+ | 34 V 6 A,G,L,S,T,V | ||
+ | 35 A 1 A,D,E,H,K,L,N,P,Q,R,S,T,V | ||
+ | 36 E 1 A,D,E,G,M,N,Q,R,S,T | ||
+ | 37 G 7 A,F,G,L,V | ||
+ | 38 K 2 D,E,H,I,K,L,M,R,V,W,Y | ||
+ | 39 A 1 A,D,E,H,K,L,Q,R,T | ||
+ | 40 I 1 A,D,E,F,G,I,K,L,M,Q,S,V,W | ||
+ | 41 A 1 A,F,G,I,L,M,V | ||
+ | 42 Q 1 A,E,H,I,K,L,M,N,P,Q,R,S,T,V | ||
+ | 43 A 2 A,D,E,I,N,P,R,S,T | ||
+ | 44 R 1 A,D,E,G,I,K,L,N,Q,R,V,Y | ||
+ | 45 P 1 A,D,E,F,H,I,K,M,P,Q,R,T,V | ||
+ | 46 P 4 A,F,G,N,P,R,V,Y | ||
+ | 47 A 7 A,D,G,H,K,N,Q,S | ||
+ | 48 Y 5 A,C,H,I,L,P,V,Y | ||
+ | 49 A 5 A,C,I,L,V | ||
+ | 50 V 4 F,I,L,V | ||
+ | 51 V 6 C,F,I,L,M,S,T,V | ||
+ | 52 D 9 D | ||
+ | 53 L 6 I,L,M,V,W | ||
+ | 54 R 7 G,K,M,N,R,T,V,W | ||
+ | 55 L 7 L,M | ||
+ | 56 E 7 A,D,E,G,P,S | ||
+ | 57 D 4 D,E,G,K,N,R | ||
+ | 58 G 5 D,E,G,I,K,L,M,T,V | ||
+ | 59 N 7 D,N,S,T | ||
+ | 60 G 9 A,G | ||
+ | 61 L 6 F,I,L,M,V,W | ||
+ | 62 D 5 A,D,E,G,H,K,Q,S | ||
+ | 63 V 6 A,F,I,L,T,V | ||
+ | 64 V 4 A,C,F,I,L,V | ||
+ | 65 E 4 A,D,E,H,K,P,Q,R,Y | ||
+ | 66 V 1 A,D,E,I,K,M,N,Q,R,T,V,Y | ||
+ | 67 L 7 I,L,M,V,W | ||
+ | 68 R 7 G,K,L,N,Q,R | ||
+ | 69 E 1 A,D,E,G,I,K,Q,R,S,V | ||
+ | 70 R 1 A,D,E,H,I,K,L,M,N,Q,R,S,T,V,W | ||
+ | 71 R 1 A,D,E,G,H,K,N,Q,R,S,Y | ||
+ | 72 P 5 A,D,I,K,L,P,Q,T,V,Y | ||
+ | 73 D 3 A,D,E,G,H,L,M,N,Q,R,T,W | ||
+ | 74 C 3 A,C,F,I,L,M,T,V | ||
+ | 75 R 8 A,K,P,R | ||
+ | 76 I 7 I,M,S,V | ||
+ | 77 V 7 A,I,L,M,V | ||
+ | 78 V 6 F,I,L,M,V | ||
+ | 79 L 7 I,L,M,V | ||
+ | 80 T 9 S,T | ||
+ | 81 G 9 A,G,S | ||
+ | 82 Y 7 F,H,K,L,Q,R,S,Y | ||
+ | 83 G 6 A,D,G,N,S | ||
+ | 84 A 5 A,D,E,N,S,T | ||
+ | 85 I 6 E,F,I,L,V | ||
+ | 86 A 4 A,D,E,F,I,M,P,S,T | ||
+ | 87 T 8 A,D,E,H,L,M,N,T | ||
+ | 88 A 9 A,E,K,R | ||
+ | 89 V 8 I,L,V | ||
+ | 90 A 2 A,D,E,F,I,K,L,N,Q,S | ||
+ | 91 A 9 A,G,T | ||
+ | 92 V 6 A,F,I,L,M,S,T,V,Y | ||
+ | 93 K 5 A,D,E,K,N,Q,R | ||
+ | 94 I 1 A,C,D,G,H,I,K,L,M,Q,R,S,T,V | ||
+ | 95 G 9 G | ||
+ | 96 A 9 A,S,V | ||
+ | 97 T 5 A,D,F,L,Q,T,V,Y | ||
+ | 98 D 9 D,E,S | ||
+ | 99 Y 7 F,Y | ||
+ | 100 L 7 I,L,M,V | ||
+ | 101 S 6 A,C,E,I,P,S,T,V | ||
+ | 102 K 9 K | ||
+ | 103 P 9 P | ||
+ | 104 A 7 A,C,F,L,V | ||
+ | 105 D 7 A,D,E,G,H,N,S | ||
+ | 106 A 4 A,D,F,I,K,L,N,P,T | ||
+ | 107 N 6 A,D,E,G,K,N,R,T | ||
+ | 108 E 5 A,D,E,K,N,Q,R,V | ||
+ | 109 V 6 I,L,M,T,V | ||
+ | 110 T 1 A,D,I,L,N,Q,R,T,V,Y | ||
+ | 111 H 7 A,E,H,L,N,Q | ||
+ | 112 A 8 A,L,R,S,T | ||
+ | 113 L 5 I,L,V | ||
+ | 114 L 4 E,H,I,K,L,Q,R | ||
+ | 115 A 6 A,Q,R,S,T | ||
+ | 116 K 4 A,I,K,L,N,R,V | ||
+ | 117 G 6 G,L,S,V | ||
+ | 118 E 8 E,R | ||
+ | 119 S 6 A,H,R,S | ||
+ | 120 L 6 G,L,S | ||
+ | 121 P 4* E,K,N,P | ||
- | 1. Eraso, J. M., J. H. Roh, X. Zeng, S. J. Callister, M. S. Lipton and S. Kaplan. 2008. Role of Global Transcriptional Regulator PrrA in Rhodobacter sphaeroides 2.4.1: Combined Transcriptome and Proteome Analysis. Journal of Bacteriology 190: 4831-4848. | ||
- | + | '' | |
+ | == Animated Image Construction == | ||
+ | '' | ||
- | + | 1. Go to the POLYVIEW 3D homepage, http://polyview.cchmc.org/polyview3d.html | |
- | + | 2. On the submission form, first select 'animation' in the "type of request" section, select the size of the animation to be generated in pixels(here the size is 600), then upload the PDB format protein structure file in the "source of structural data" section. | |
+ | |||
+ | 3. On the "chain color and rendering section" select 'cartoon' and 'secondary structure'. | ||
+ | |||
+ | 4. On "advanced structural annotation" section select 'docking models in Capri format'. | ||
+ | |||
+ | 5. Any other forms for the animation may be selected by referring to the "Samples" according to the protein structure to be animated. | ||
+ | |||
+ | '' | ||
+ | == JMol Image Construction == | ||
+ | '' | ||
+ | |||
+ | 1. First retrieve your protein sequence from http://www.ncbi.nlm.nih.gov/. | ||
+ | |||
+ | 2. Go to 3D-JIGSAW page http://bmm.cancerresearchuk.org/~3djigsaw/ and paste the sequence on the submission page. A .pdb format image of your protein will be sent to you on your email which can be opened by RASMOL. | ||
+ | |||
+ | 3. Upload this file on Proteopedia and then load the JMol applet for the protein following instructions on the Help:Editing page http://www.proteopedia.org/wiki/index.php/Help:Editing. | ||
+ | |||
+ | 4. You can edit your protein by using the scene authoring tools after loading the applet. | ||
+ | |||
+ | '' | ||
+ | == Reference == | ||
+ | '' | ||
+ | <references/> | ||
- | + | '' | |
- | + | == Page Contributor== | |
+ | '' | ||
+ | Yana Fedotova, email: yana.fedotova@gmail.com, yfedot@bgsu.edu | ||
- | + | '' | |
+ | == Acknowledgments == | ||
+ | '' | ||
+ | Dr. Jill Zeilstra-Ryalls, Susana Retamal and Adam Meade |
Current revision
Photosynthesis Response Regulator PrrA of Rhodobacter sphaeroides
Background Information
PrrA of Rhodobacter sphaeroides is the DNA binding protein partner of the redox-responsive two-component signal transduction regulatory system, PrrBA. PrrA regulates genes required for carbon dioxide and nitrogen fixations, photosynthesis and proton oxidation and uptake[1]. PrrB is an integral membrane sensor histidine kinase that can phosphorylate PrrA when it senses changes in redox, such as can occur when oxygen tension change. Based on transciptome profiling, of the 4,284 genes represented in R. sphaeroides 2.4.1 GeneChip, PrrA apparently regulates 1,057[2].
Structure of the Proposed PrrA Protein
|
- This is the of the protein.
Amino Terminus | Carboxy Terminus |
- The highlighted of the protein.
- The of the protein.
The PrrA protein is predicted to consist of a N-terminal receiver domain, extending from 1-130 amino acids, and a C-terminal domain covering approximately from 141-184 amino acids (residues 139-183 are ca. 90% conserved within the protein family[3]). It is also suggested that the C-terminal domain contains a helix-turn-helix (HTH) DNA-binding motif from 159-179 amino acids (100% conserved within the family via sequence analysis[4]). The two domains are said to be connected via a short proline-rich linker[5].
Physico-Chemical Properties of PrrA
Molecular weight: 20483.5 Da
Number of Amino Acids: 184
Theoretical pI: 6.85
The estimated half-life is: 30 hours (mammalian reticulocytes, in vitro). >20 hours (yeast, in vivo). >10 hours (Escherichia coli, in vivo).
Total number of negatively charged residues (Asp + Glu): 28
Total number of positively charged residues (Arg + Lys): 28
Atomic Composition
Carbon C 894 Hydrogen H 1468 Nitrogen N 268 Oxygen O 268 Sulfur S 7
Total number of atoms: 2905
Extinction coefficients are in units of M-1 cm-1, at 280 nm measured in water.
Ext. coefficient 11585
Abs 0.1% (=1 g/l) 0.566, assuming ALL Cys residues appear as half cystines
Ext. coefficient 11460
Abs 0.1% (=1 g/l) 0.559, assuming NO Cys residues appear as half cystines
Instability index: 55.68
Aliphatic index: 95.49
Grand Average of Hydropathicity (GRAVY): -0.311
Secondary Structure Composition of PrrA
Alpha-helices: 34.78%
Extended (Beta-sheets): 20.65%
Other (Loops): 44.57%
The Full-Length R. sphaeroides PrrA Amino Acid Sequence (184 Residues)
1 maedlvfelg adrslllvdd depflkrlak amekrgfvle taqsvaegka iaqarppaya
61 vvdlrledgn gldvvevlre rrpdcrivvl tgygaiatav aavkigatdy lskpadanev
121 thallakges lppppenpms adrvrwehiq riyemcdrnv setarrlnmh rrtlqrilak
181 rspr
Amino Acid | Number present | Percentage of total present |
---|---|---|
Ala (A) | 15 | 13.0% |
Arg (R) | 10 | 10.9% |
Asn (N) | 6 | 2.7% |
Asp (D) | 10 | 7.1% |
Cys (C) | 1 | 1.1% |
Gln (Q) | 5 | 2.2% |
Glu (E) | 11 | 8.2% |
Gly (G) | 9 | 4.9% |
His (H) | 10 | 1.6% |
Ile (I) | 3 | 3.8% |
Leu (L) | 21 | 10.9% |
Lys (K) | 6 | 4.3% |
Met (M) | 6 | 2.7% |
Phe (F) | 2 | 1.6% |
Pro (P) | 8 | 6.0% |
Ser (S) | 7 | 3.8% |
Thr (T) | 13 | 3.8% |
Trp (W) | 2 | 0.5% |
Tyr (Y) | 6 | 2.2% |
Val (V) | 12 | 8.7% |
Pyl (O) | 0 | 0.0% |
Sec (U) | 0 | 0.0% |
1umq
1umq is an engineered chain structure fragment sequence of the DNA binding domain of PrrA with residues from 125 to 184 from R. sphaeroides. The cited article investigated the C-terminal effector domain of PrrA by NMR, which was said to consist of a three-helix bundle with a helix-turn-helix DNA binding motif.
http://proteopedia.org/wiki/index.php/1umq
Phylogenetic Tree of PrrA
http://consurf.tau.ac.il/results/1240259643/treeView.html
Evolution of PrrA
Amino Acid Conservation Scores
The following scores assist in examining evolutionary relatedness of the amino acid sequence of PrrA to that of other amino acid sequences.
- POS: The position of the AA in the SEQRES derived sequence.
- SEQ: The SEQRES derived sequence in one letter code.
- 3LATOM: The ATOM derived sequence in three letter code, including the AA's positions as they appear in the PDB file and the chain identifier.
- SCORE: The normalized conservation scores.
- COLOR: The color scale representing the conservation scores (9 - conserved, 1 - variable).
- CONFIDENCE INTERVAL: When using the bayesian method for calculating rates, a confidence interval is assigned to each of the inferred evolutionary conservation scores.
- CONFIDENCE INTERVAL COLORS: When using the bayesian method for calculating rates. The color scale representing the lower and upper bounds of the confidence interval.
- MSA DATA: The number of aligned sequences having an amino acid (non-gapped) from the overall number of sequences at each position.
- RESIDUE VARIETY: The residues variety at each position of the multiple sequence alignment.
POS SEQ COLOR RESIDUE VARIETY (Normalized) 1 D 7 D,N,R 2 R 4 K,P,Q,R,Y 3 S 7 K,N,S,T 4 L 7 A,I,L,V 5 L 8 A,F,H,L 6 L 5 I,L,V 7 V 8 A,I,L,V 8 D 9 D,E 9 D 9 D 10 D 7 D,E,N 11 E 1 A,D,E,I,K,N,P,Q,R,S,T,V 12 P 3 A,D,E,G,K,L,N,P,S 13 F 7 F,H,I,L,T,V 14 L 6 A,C,G,L,R,S,V 15 K 1 D,E,G,H,K,N,Q,R,T,W 16 R 2 A,F,G,I,L,M,R,S,T,V,W,Y 17 L 7 F,I,L,M,T,V 18 A 2 A,E,G,I,N,Q,R,S,T 19 K 1 A,F,G,I,K,L,Q,R,T,V,Y 20 A 6 A,C,G,I,L,M,N,R,S,T 21 M 8 A,F,I,L,M 22 E 4 A,E,G,K,Q,R,S,T,V 23 K 1 A,D,E,F,G,K,L,M,Q,R,S,T 24 R 3 A,D,E,L,M,N,Q,R,S,W 25 G 9 G,K 26 F 4 F,H,L,M,Y 27 V 1 A,D,E,K,L,N,Q,R,S,T,V 28 L 7 A,C,L,P,T,V 29 E 2 A,D,E,F,H,I,K,L,R,S,T,V,Y 30 T 1 A,C,E,H,I,L,M,Q,S,T,V,W 31 A 7 A,F,H,T,V,Y 32 Q 1 A,D,E,F,G,H,N,Q,R,S,T,Y 33 S 6 D,G,H,L,N,S,T 34 V 6 A,G,L,S,T,V 35 A 1 A,D,E,H,K,L,N,P,Q,R,S,T,V 36 E 1 A,D,E,G,M,N,Q,R,S,T 37 G 7 A,F,G,L,V 38 K 2 D,E,H,I,K,L,M,R,V,W,Y 39 A 1 A,D,E,H,K,L,Q,R,T 40 I 1 A,D,E,F,G,I,K,L,M,Q,S,V,W 41 A 1 A,F,G,I,L,M,V 42 Q 1 A,E,H,I,K,L,M,N,P,Q,R,S,T,V 43 A 2 A,D,E,I,N,P,R,S,T 44 R 1 A,D,E,G,I,K,L,N,Q,R,V,Y 45 P 1 A,D,E,F,H,I,K,M,P,Q,R,T,V 46 P 4 A,F,G,N,P,R,V,Y 47 A 7 A,D,G,H,K,N,Q,S 48 Y 5 A,C,H,I,L,P,V,Y 49 A 5 A,C,I,L,V 50 V 4 F,I,L,V 51 V 6 C,F,I,L,M,S,T,V 52 D 9 D 53 L 6 I,L,M,V,W 54 R 7 G,K,M,N,R,T,V,W 55 L 7 L,M 56 E 7 A,D,E,G,P,S 57 D 4 D,E,G,K,N,R 58 G 5 D,E,G,I,K,L,M,T,V 59 N 7 D,N,S,T 60 G 9 A,G 61 L 6 F,I,L,M,V,W 62 D 5 A,D,E,G,H,K,Q,S 63 V 6 A,F,I,L,T,V 64 V 4 A,C,F,I,L,V 65 E 4 A,D,E,H,K,P,Q,R,Y 66 V 1 A,D,E,I,K,M,N,Q,R,T,V,Y 67 L 7 I,L,M,V,W 68 R 7 G,K,L,N,Q,R 69 E 1 A,D,E,G,I,K,Q,R,S,V 70 R 1 A,D,E,H,I,K,L,M,N,Q,R,S,T,V,W 71 R 1 A,D,E,G,H,K,N,Q,R,S,Y 72 P 5 A,D,I,K,L,P,Q,T,V,Y 73 D 3 A,D,E,G,H,L,M,N,Q,R,T,W 74 C 3 A,C,F,I,L,M,T,V 75 R 8 A,K,P,R 76 I 7 I,M,S,V 77 V 7 A,I,L,M,V 78 V 6 F,I,L,M,V 79 L 7 I,L,M,V 80 T 9 S,T 81 G 9 A,G,S 82 Y 7 F,H,K,L,Q,R,S,Y 83 G 6 A,D,G,N,S 84 A 5 A,D,E,N,S,T 85 I 6 E,F,I,L,V 86 A 4 A,D,E,F,I,M,P,S,T 87 T 8 A,D,E,H,L,M,N,T 88 A 9 A,E,K,R 89 V 8 I,L,V 90 A 2 A,D,E,F,I,K,L,N,Q,S 91 A 9 A,G,T 92 V 6 A,F,I,L,M,S,T,V,Y 93 K 5 A,D,E,K,N,Q,R 94 I 1 A,C,D,G,H,I,K,L,M,Q,R,S,T,V 95 G 9 G 96 A 9 A,S,V 97 T 5 A,D,F,L,Q,T,V,Y 98 D 9 D,E,S 99 Y 7 F,Y 100 L 7 I,L,M,V 101 S 6 A,C,E,I,P,S,T,V 102 K 9 K 103 P 9 P 104 A 7 A,C,F,L,V 105 D 7 A,D,E,G,H,N,S 106 A 4 A,D,F,I,K,L,N,P,T 107 N 6 A,D,E,G,K,N,R,T 108 E 5 A,D,E,K,N,Q,R,V 109 V 6 I,L,M,T,V 110 T 1 A,D,I,L,N,Q,R,T,V,Y 111 H 7 A,E,H,L,N,Q 112 A 8 A,L,R,S,T 113 L 5 I,L,V 114 L 4 E,H,I,K,L,Q,R 115 A 6 A,Q,R,S,T 116 K 4 A,I,K,L,N,R,V 117 G 6 G,L,S,V 118 E 8 E,R 119 S 6 A,H,R,S 120 L 6 G,L,S 121 P 4* E,K,N,P
Animated Image Construction
1. Go to the POLYVIEW 3D homepage, http://polyview.cchmc.org/polyview3d.html
2. On the submission form, first select 'animation' in the "type of request" section, select the size of the animation to be generated in pixels(here the size is 600), then upload the PDB format protein structure file in the "source of structural data" section.
3. On the "chain color and rendering section" select 'cartoon' and 'secondary structure'.
4. On "advanced structural annotation" section select 'docking models in Capri format'.
5. Any other forms for the animation may be selected by referring to the "Samples" according to the protein structure to be animated.
JMol Image Construction
1. First retrieve your protein sequence from http://www.ncbi.nlm.nih.gov/.
2. Go to 3D-JIGSAW page http://bmm.cancerresearchuk.org/~3djigsaw/ and paste the sequence on the submission page. A .pdb format image of your protein will be sent to you on your email which can be opened by RASMOL.
3. Upload this file on Proteopedia and then load the JMol applet for the protein following instructions on the Help:Editing page http://www.proteopedia.org/wiki/index.php/Help:Editing.
4. You can edit your protein by using the scene authoring tools after loading the applet.
Reference
- ↑ Eraso, J. M., J. H. Roh, X. Zeng, S. J. Callister, M. S. Lipton and S. Kaplan. 2008. Role of Global Transcriptional Regulator PrrA in Rhodobacter sphaeroides 2.4.1: Combined Transcriptome and Proteome Analysis. Journal of Bacteriology 190: 4831-4848.
- ↑ Eraso, J. M. and S. Kaplan. 1994. prrA, a Putative Response Regulator Involved in Oxygen Regulation of Photosynthesis Gene Expression in Rhodobacter sphaeroides. Journal of Bacteriology 176:32-43.
- ↑ Masuda,S., Matsumoto,Y., Nagashima,K.V., Shimada,K., Inoue,K., Bauer,C.E. and Matsuura,K. 1999. Structural and Functional Analyses of Photosynthetic Regulatory Genes regA and regB from Rhodovulum sulfidophilum, Roseobacter denitrificans and Rhodobacter capsulatus. Journal of Bacteriology 181, 4205-4215.
- ↑ Masuda,S., Matsumoto,Y., Nagashima,K.V., Shimada,K., Inoue,K., Bauer,C.E. and Matsuura,K. 1999. Structural and Functional Analyses of Photosynthetic Regulatory Genes regA and regB from Rhodovulum sulfidophilum, Roseobacter denitrificans’’ and Rhodobacter capsulatus. Journal of Bacteriology 181, 4205-4215.
- ↑ Laguri, C., M. K. Phillips-Jones, and M. P. Williamson. 2004. Solution Structure and DNA Binding of the Effector Domain from the Global Regulator PrrA (RegA) from Rhodobacter sphaeroides: Insights into DNA Binding Specificity. Journal of Bacteriology 176:32-43.
Page Contributor
Yana Fedotova, email: yana.fedotova@gmail.com, yfedot@bgsu.edu
Acknowledgments
Dr. Jill Zeilstra-Ryalls, Susana Retamal and Adam Meade