2k3o

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Current revision (19:09, 29 May 2024) (edit) (undo)
 
(10 intermediate revisions not shown.)
Line 1: Line 1:
-
{{Seed}}
 
-
[[Image:2k3o.jpg|left|200px]]
 
-
<!--
+
==Solution structure of the type 2 repetitive domain (TUSP1-RP2) of the egg case silk from Nephila Antipodiana==
-
The line below this paragraph, containing "STRUCTURE_2k3o", creates the "Structure Box" on the page.
+
<StructureSection load='2k3o' size='340' side='right'caption='[[2k3o]]' scene=''>
-
You may change the PDB parameter (which sets the PDB file loaded into the applet)
+
== Structural highlights ==
-
or the SCENE parameter (which sets the initial scene displayed when the page is loaded),
+
<table><tr><td colspan='2'>[[2k3o]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Trichonephila_antipodiana Trichonephila antipodiana]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2K3O OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2K3O FirstGlance]. <br>
-
or leave the SCENE parameter empty for the default display.
+
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Solution NMR</td></tr>
-
-->
+
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2k3o FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2k3o OCA], [https://pdbe.org/2k3o PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2k3o RCSB], [https://www.ebi.ac.uk/pdbsum/2k3o PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2k3o ProSAT]</span></td></tr>
-
{{STRUCTURE_2k3o| PDB=2k3o | SCENE= }}
+
</table>
 +
== Function ==
 +
[https://www.uniprot.org/uniprot/Q1I128_9ARAC Q1I128_9ARAC]
 +
== Evolutionary Conservation ==
 +
[[Image:Consurf_key_small.gif|200px|right]]
 +
Check<jmol>
 +
<jmolCheckbox>
 +
<scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/k3/2k3o_consurf.spt"</scriptWhenChecked>
 +
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
 +
<text>to colour the structure by Evolutionary Conservation</text>
 +
</jmolCheckbox>
 +
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=2k3o ConSurf].
 +
<div style="clear:both"></div>
 +
<div style="background-color:#fffaf0;">
 +
== Publication Abstract from PubMed ==
 +
Spider silks are renowned for their excellent mechanical properties and biomimetic and industrial potentials. They are formed from the natural refolding of water-soluble fibroins with alpha-helical and random coil structures in silk glands into insoluble fibers with mainly beta-structures. The structures of the fibroins at atomic resolution and silk formation mechanism remain largely unknown. Here, we report the 3D structures of individual domains of a approximately 366-kDa eggcase silk protein that consists of 20 identical type 1 repetitive domains, one type 2 repetitive domain, and conserved nonrepetitive N- and C-terminal domains. The structures of the individual domains in solution were determined by using NMR techniques. The domain interactions were investigated by NMR and dynamic light-scattering techniques. The formation of micelles and macroscopic fibers from the domains was examined by electron microscopy. We find that either of the terminal domains covalently linked with at least one repetitive domain spontaneously forms micelle-like structures and can be further transformed into fibers at &gt;/=37 degrees C and a protein concentration of &gt;0.1 wt%. Our biophysical and biochemical experiments indicate that the less hydrophilic terminal domains initiate the assembly of the proteins and form the outer layer of the micelles whereas the more hydrophilic repetitive domains are embedded inside to ensure the formation of the micelle-like structures that are the essential intermediates in silk formation. Our results establish the roles of individual silk protein domains in fiber formation and provide the basis for designing miniature fibroins for producing artificial silks.
-
===Solution structure of the type 2 repetitive domain (TUSP1-RP2) of the egg case silk from Nephila Antipodiana===
+
Solution structure of eggcase silk protein and its implications for silk fiber formation.,Lin Z, Huang W, Zhang J, Fan JS, Yang D Proc Natl Acad Sci U S A. 2009 May 20. PMID:19458259<ref>PMID:19458259</ref>
-
 
+
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
-
<!--
+
</div>
-
The line below this paragraph, {{ABSTRACT_PUBMED_19458259}}, adds the Publication Abstract to the page
+
<div class="pdbe-citations 2k3o" style="background-color:#fffaf0;"></div>
-
(as it appears on PubMed at http://www.pubmed.gov), where 19458259 is the PubMed ID number.
+
== References ==
-
-->
+
<references/>
-
{{ABSTRACT_PUBMED_19458259}}
+
__TOC__
-
 
+
</StructureSection>
-
==About this Structure==
+
[[Category: Large Structures]]
-
2K3O is a 1 chain structure of sequence from [http://en.wikipedia.org/wiki/Nephila_antipodiana Nephila antipodiana]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2K3O OCA].
+
[[Category: Trichonephila antipodiana]]
-
 
+
[[Category: Fan J]]
-
==Reference==
+
[[Category: Huang W]]
-
<ref group="xtra">PMID:19458259</ref><references group="xtra"/>
+
[[Category: Lin Z]]
-
[[Category: Nephila antipodiana]]
+
[[Category: Yang D]]
-
[[Category: Fan, J.]]
+
-
[[Category: Huang, W.]]
+
-
[[Category: Lin, Z.]]
+
-
[[Category: Yang, D.]]
+
-
[[Category: Helix]]
+
-
[[Category: Structural protein]]
+
-
 
+
-
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Thu Jun 4 07:27:20 2009''
+

Current revision

Solution structure of the type 2 repetitive domain (TUSP1-RP2) of the egg case silk from Nephila Antipodiana

PDB ID 2k3o

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools