We apologize for Proteopedia being slow to respond. For the past two years, a new implementation of Proteopedia has been being built. Soon, it will replace this 18-year old system. All existing content will be moved to the new system at a date that will be announced here.
User:Eran Hodis/Sandbox3
From Proteopedia
(Difference between revisions)
(Removing all content from page) |
|||
| Line 1: | Line 1: | ||
| - | {{STRUCTURE_2ypi|PDB=2ypi|SCENE=}} | ||
| - | == Overview == | ||
| - | |||
| - | '''Triose Phosphate Isomerase''' (TPI or TIM)is a ubiquitous enzyme with a molecular weight of 56 kD which catalyzes the reversible interconversion of the triose phosphate isomers dihydroxyacetone phosphate ([http://en.wikipedia.org/wiki/DHAP DHAP]) and D-glyceraldehyde-3-phosphate <scene name='Triose_Phosphate_Isomerase/Pga/1'>(GAP)</scene>, an essential process in the glycolytic pathway. More simply, the enzyme catalyzes the [http://en.wikipedia.org/wiki/Isomerization isomerization] of a ketose (DHAP) to an aldose [http://en.wikipedia.org/wiki/Glyceraldehyde_3-phosphate GAP] also referred to as PGAL. In regards to the two isomers, at equilibrium, roughly 96% of the triose phosphate is in the DHAP isomer form; however, the isomerization reaction proceeds due to the rapid removal of GAP from the subsequent reactions of [http://en.wikipedia.org/wiki/Glycolysis glycolysis]. TPI is an example of a [http://en.wikipedia.org/wiki/Catalytically_perfect_enzyme catalytically perfect enzyme], indicating that for almost every enzyme-substrate encounter, a product is formed and that this interaction is only limited by the substrate diffusion rate. Other catalytically perfect enzymes include [http://en.wikipedia.org/wiki/Carbonic_anhydrase carbonic anhydrase], [http://en.wikipedia.org/wiki/Acetylcholinesterase acetylcholinesterase], [http://en.wikipedia.org/wiki/Catalase catalase] and [http://en.wikipedia.org/wiki/Fumarase fumarase]. In addition to its relevance in glycolysis, TPI is also involved in metabolic biological processes such as gluconeogenesis, pentose phosphate shunt and fatty acid biosynthesis among others. | ||
| - | |||
| - | <scene name='User:Eran_Hodis/Sandbox3/Test/13'>TextToBeDisplayed</scene> | ||
